Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic property effect

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Other important uses of stannic oxide are as a putty powder for polishing marble, granite, glass, and plastic lenses and as a catalyst. The most widely used heterogeneous tin catalysts are those based on binary oxide systems with stannic oxide for use in organic oxidation reactions. The tin—antimony oxide system is particularly selective in the oxidation and ammoxidation of propylene to acrolein, acryHc acid, and acrylonitrile. Research has been conducted for many years on the catalytic properties of stannic oxide and its effectiveness in catalyzing the oxidation of carbon monoxide at below 150°C has been described (25). [Pg.65]

Metals and alloys, the principal industrial metalhc catalysts, are found in periodic group TII, which are transition elements with almost-completed 3d, 4d, and 5d electronic orbits. According to theory, electrons from adsorbed molecules can fill the vacancies in the incomplete shells and thus make a chemical bond. What happens subsequently depends on the operating conditions. Platinum, palladium, and nickel form both hydrides and oxides they are effective in hydrogenation (vegetable oils) and oxidation (ammonia or sulfur dioxide). Alloys do not always have catalytic properties intermediate between those of the component metals, since the surface condition may be different from the bulk and catalysis is a function of the surface condition. Addition of some rhenium to Pt/AlgO permits the use of lower temperatures and slows the deactivation rate. The mechanism of catalysis by alloys is still controversial in many instances. [Pg.2094]

The catalytic properties of the shock-modified rutile whose defect properties have been reported in previous sections of this chapter have been studied in a flow reactor used to measure the oxidation of CO by Williams and coworkers [82G01, 86L01]. As shown in Fig. 7.7 the effect of shock activation is substantial. Whereas the unshocked material displays such low activity that an effect could only be observed at the elevated temperature of 400 °C, the shock-modified powder shows substantially enhanced catalytic activity with the extent of the effect depending on the shock pressure. After a short-time transient is annealed out, the activity is persistent for about 8 h. Although the source of the surface defects that cause the activity is not identified, the known annealing behavior of the point defects indicates that they are not responsible for the effect. [Pg.172]

The effect that the presence of hydrogen in the lattice of nickel or nickel-copper alloys has on catalytic properties is much more difficult to trace in the literature than is the case with palladium and its alloys. Several factors contribute to this ... [Pg.268]

Additional information concerning the mechanisms of solid—solid interactions has been obtained by many diverse experimental approaches, as the following examples testify adsorptive and catalytic properties of the reactant mixture [1,111], reflectance spectroscopy [420], NMR [421], EPR [347], electromotive force determinations [421], tracer experiments [422], and doping effects [423], This list cannot be comprehensive. Electron probe microanalysis has also been used as an analytical (rather than a kinetic) tool [422,424] for the determination of distributions of elements within the reactant mixture. Infrared analyses have been used [425] for the investigation of the solid state reactions between NH3 and S02 at low temperatures in the presence and in the absence of water. [Pg.39]

Kadlec and Rosmusova [1153] believe that both Ni and Co oxalates initially yield product oxide and that the proportion of metal increases with a. Since nickel oxalate decomposes at temperatures 60 K lower than those for CoC204, even a small proportion of Ni2+ markedly increases the rate of decomposition of cobalt oxalate. The effect was attributed to the catalytic properties of the preferentially formed Ni metal. The a—time curves were generally sigmoid and showed only slight deviations in shape with changes in the Ni Co ratio. In the decomposition of a mechanical... [Pg.243]

O.A. Mar ina, V.A. Sobyanin, V.D. Belyaev, and V.N. Parmon, The effect of electrochemical oxygen pumping on catalytic properties of Ag and Au electrodes at gas-phase oxidation ofCH4, Catalysis Today 13, 567-570 (1992). [Pg.329]

In all these cases the support has a dramatic effect on the activity and selectivity of the active phase. In classical terminology all these are Schwab effects of the second kind where an oxide affects the properties of a metal. Schwab effects of the first kind , where a metal affects the catalytic properties of a catalytic oxide, are less common although in the case of the Au/Sn02 oxidation catalysts9,10 it appears that most of the catalytic action takes place at the metal-oxide-gas three phase boundaries. [Pg.489]

Effect of oxidative treatments on catalytic property of carbon nanofiber composite... [Pg.721]

Preparation conditions of Pd/CNFs by wet impregnation method, such as palladium precursor, impregnation time, calcinations and reduction, are proved to have profound effect on the catalytic property. The catalyst prqjared by impregnating HzPdCLi precursor in an hour, then calcinated in air and reduced in 20%H2/Ar is believed to perform better in CTA hydropurification than the industrial Pd/C under laboratory conditions. [Pg.756]

Ozenler SS, Kadirgan F (2006) The effect of the matrix on the electro-catalytic properties of methanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides. J Power Sources 154 364-369... [Pg.343]

From the previous results, it has been proven that the nature of the support, although it has no significant influence on the Pd electronic properties, modifies the catalytic properties of the solids To permit a better understanding of these supports effects, the surface properties of the supports (in the presence of the metal) have been studied, in particular the acidic properties and the oxygen mobilities. The A1203 and Z1O2 supports have been mainly onsidered. [Pg.351]

In order to investigate the effect of sulfur, the catalytic properties were determined ... [Pg.626]

Attention has been given to the synthesis of bimetallic silver-gold clusters [71] due to their effective catalytic properties, resistance to poisoning, and selectivity [72]. Recently molecular materials with gold and silver nanoclusters and nanowires have been synthesized. These materials are considered to be good candidates for electronic nanodevices and biosensors [73]. [Pg.33]

Adatoms produce a strong change in catalytic properties of the metal on which they are adsorbed. These catalytic effects are highly specific. They depend both on the nature of the metal and on the nature of the adatoms they also depend on the nature of the electrochemical reaction. For instance, tin adatoms on platinum strongly (by more than two orders of magnitude) enhance the rate of anodic methanol oxidation. [Pg.541]

Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A. 2006. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J Phys Chem B 110 13393-13398. [Pg.208]


See other pages where Catalytic property effect is mentioned: [Pg.325]    [Pg.325]    [Pg.445]    [Pg.181]    [Pg.153]    [Pg.315]    [Pg.448]    [Pg.171]    [Pg.147]    [Pg.255]    [Pg.262]    [Pg.186]    [Pg.374]    [Pg.179]    [Pg.150]    [Pg.48]    [Pg.721]    [Pg.123]    [Pg.50]    [Pg.66]    [Pg.165]    [Pg.173]    [Pg.179]    [Pg.187]    [Pg.187]    [Pg.258]    [Pg.334]    [Pg.466]    [Pg.165]    [Pg.253]    [Pg.707]   
See also in sourсe #XX -- [ Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 ]




SEARCH



Catalytic effect

Catalytic properties

© 2024 chempedia.info