Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic asymmetric Diels-Alder catalyzed

Catalytic asymmetric Diels-Alder reactions are presented by Hayashi, who takes as the starting point the synthetically useful breakthrough in 1979 by Koga et al. The various chiral Lewis acids which can catalyze the reaction of different dieno-philes are presented. Closely related to the Diels-Alder reaction is the [3-1-2] carbo-cyclic cycloaddition of palladium trimethylenemethane with alkenes, discovered by Trost and Chan. In the second chapter Chan provides some brief background information about this class of cycloaddition reaction, but concentrates primarily on recent advances. The part of the book dealing with carbo-cycloaddition reactions is... [Pg.2]

Recently, catalytic asymmetric Diels-Alder reactions have been investigated. Yamamoto reported a Bronsted-acid-assistcd chiral (BLA) Lewis acid, prepared from (R)-3-(2-hydroxy-3-phcnylphenyl)-2,2 -dihydroxy-1,1 -binaphthyl and 3,5A(trifluoromethy I) - be nzeneboronic acid, that is effective in catalyzing the enantioselective Diels-Alder reaction between a,(3-enals and various dienes.62 The interesting aspect is the role of water, THF, and MS 4A in the preparation of the catalyst (Eq. 12.19). To prevent the trimerization of the boronic acid during the preparation of the catalyst, the chiral triol and the boronic acid were mixed under aqueous conditions and then dried. Using the catalyst prepared in this manner, a 99% ee was obtained in the Diels-Alder reaction... [Pg.387]

Imidazole-containing compounds have been utilized as reagents for various synthetic transformations. A convenient access to substituted allyl enol carbonates was established through the reaction of ketone enolates with the complex of allyl l//-imidazole-l-carboxylates 74 and boron trifluoride etherate <07JOC9372>. Relatively mild and highly efficient Cul-catalyzed /V-arylation procedures for imidazoles with aryl and heteroaryl bromides or chlorides have been developed in the presence of ligands 75 and cesium carbonate <07JOC2737>. a, -Unsaturated 2-acyl imidazoles 76 are an alternative and practical class of dienophiles for the DNA-based catalytic asymmetric Diels-Alder reaction in... [Pg.199]

For benzoic acid acceleration in Yb(OTf)3-catalyzed allylation of aldehydes in acetonitrile, (a) As-pinall, H.C. Greeves, N. Mclver, E. G. Tetrahedron Lett. 1998, 39, 9283. For acetic acid acceleration in Yb(fod)3-catalyzed ene reaction of aldehydes with alkyl vinyl ethers, ene reaction of aldehydes with alkyl vinyl ethers, (b) Deaton, M. V. Ciufolini, M.A. Tetrahedron Lett. 1993, 34, 2409. Yamamoto et al. reported Brpnsted acid-assisted chiral Lewis acids and Lewis acid-assisted Brpnsted acids which were used for catalytic asymmetric Diels-Alder reactions and protonations and stoichiometric asymmetric aza Diels-Alder reactions, aldol-type reactions of imines, and an aldol reaction, (c) Ishihara, K. Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 1561. (d) Ishihara, K. Kurihara, H. Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 3049. (e) Ishihara, K. Nakamura, S. Kaneeda, M. Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854. (f) Ishihara, K. Miyata, M. Hattori, K. Tada, T. Yamamoto, H. J. Am. Chem. Sc c. 1994, 116, 10520. (g) Yamamoto, H. J. Am. Chem. Soc 1994, 116, 10520. (h) ishihara, K. Kurihara, H. Matsumoto, M. Yamamoto Ishihara, K. Kurihara, H. Matsumoto, M. Yamamoto, H. J. Am. Chem. Soc 1998, 120, 6920. [Pg.561]

A further application of the heterobimetallic lanthanoid catalysts of the LLB type to the field of catalytic asymmetric Diels-Alder reactions [47,48] was also achieved by Shibasaki et al. [49]. In general, LLB type complexes are multifunctional asymmetric catalysts, showing both Bronsted basicity and Lewis acidity. Nevertheless, in this study the use of LLB type catalysts acting as asymmetric Lewis acids alone was examined and led to the development of an LLB (type) catalyzed asymmetric Diels-Alder reaction [49]. Representative results for the catalytic asymmetric Diels-Alder reactions using 48 and cyclopentadiene in toluene as a solvent are shown in Scheme 16. [Pg.161]

A series of chiral substituted 4,5-bis(2-oxazolinyl)-(2,7-di-t-butyl-9,9-dimethyl)-9H-xanthenes (xabox) (12a-c) and their manganese complexes were synthesized and applied for catalytic asymmetric Diels—Alder reactions (Schemes 16.3 and 16.4). Among them, xabox-i-Pr-Mn(II) (13a) and xabox-Bn-Mn(II) (13b) complex catalyzed Diels-Alder reaction affords cycloadduct in high yield along with 82% ee (endo) and 98 2 endo exo ratio [6]. [Pg.332]

Recently, a synthesis of ( )-oseltamivir featuring a novel asymmetric Diels-Alder—type reaction catalyzed by a barium/F2-FujiCAPO complex was reported by Shibasaki et al. (Scheme 16.3). Diene 16 and dienophile 17 were selected for this transformation however, the diene 16 has never been used before in Lewis acid-catalyzed asymmetric Diels-Alder reactions because of its lability under acidic conditions. Thus, a conceptually distinct catalytic asymmetric Diels-Alder reaction that was not dependent on an acid catalyst was examined by testing metal alkoxides that may activate the siloxy-diene through the formation of a hyper-valent silicate or transmetalation. [Pg.442]

Asymmetric Diels-Alder reactions using a dienophile containing a chiral auxiliary were developed more than 20 years ago. Although the auxiliary-based Diels-Alder reaction is still important, it has two drawbacks - additional steps are necessary, first to introduce the chiral auxiliary into the starting material, and then to remove it after the reaction. At least an equimolar amount of the chiral auxiliary is, moreover, necessary. After the discovery that Lewis acids catalyze the Diels-Alder reaction, the introduction of chirality into such catalysts has been investigated. The Diels-Alder reaction utilizing a chiral Lewis acid is truly a practical synthetic transformation, not only because the products obtained are synthetically useful, but also because a catalytic amount of the chiral component can, in theory, produce a huge amount of the chiral product. [Pg.4]

In the presence of a catalytic amount of chiral lanthanide triflate 63, the reaction of 3-acyl-l,3-oxazolidin-2-ones with cyclopentadiene produces Diels-Alder adducts in high yields and high ee. The chiral lanthanide triflate 63 can be prepared from ytterbium triflate, (R)-( I )-binaphthol, and a tertiary amine. Both enantiomers of the cycloaddition product can be prepared via this chiral lanthanide (III) complex-catalyzed reaction using the same chiral source [(R)-(+)-binaphthol] and an appropriately selected achiral ligand. This achiral ligand serves as an additive to stabilize the catalyst in the sense of preventing the catalyst from aging. Asymmetric catalytic aza Diels-Alder reactions can also be carried out successfully under these conditions (Scheme 5-21).19... [Pg.282]

Asymmetric Diels-Alder Reaction of Unsaturated Carboxylic Acids. A chiral acyloxyborane (CAB) complex (1) prepared from mono(2,6-dimethoxybenzoyl)tartaric acid and 1 equiv of borane is an excellent catalyst for the Diels-Alder reaction of a,p-unsaturated carboxylic acids and dienes. In the CAB-catalyzed Diels-Alder reaction, adducts are formed in a highly diastereo- and enantioselective manner under mild reaction conditions (eq 2). The reaction is catalytic 10 mol % of catalyst is sufficient for efficient conversion, and the chiral auxiliary can be recovered and reused. [Pg.230]

Asymmetric catalytic hetero Diels-Alder reactions give access to synthetically important substituted heterocycles [45]. Asymmetric oxa Diels-Alder reactions involving aldehydes and ketones and catalyzed by chiral Lewis acid catalysts can be performed with a high degree of chiral induction [46]. The field is much less advanced that of the corresponding catalytic enantioselective aza Diels-Alder reactions. [Pg.271]

The earliest report of a reaction mediated by a chiral three coordinate aluminum species describes an asymmetric Meerwein-Poimdorf-Verley reduction of ketones with chiral aluminum alkoxides which resulted in low induction in the alcohol products [1]. Subsequent developments in the area were sparse until over a decade later when chiral aluminum Lewis acids began to be explored in polymerization reactions, with the first report describing the polymerization of benzofuran with catalysts prepared from and ethylaluminum dichloride and a variety of chiral compounds including /5-phenylalanine [2]. Curiously, these reports did not precipitate further studies at the time because the next development in the field did not occur until nearly two decades later when Hashimoto, Komeshima and Koga reported that a catalyst derived from ethylaluminum dichloride and menthol catalyzed the asymmetric Diels-Alder reaction shown in Sch. 1 [3,4]. This is especially curious because the discovery that a Diels-Alder reaction could be accelerated by aluminum chloride was known at the time the polymerization work appeared [5], Perhaps it was because of this long delay, that the report of this asymmetric catalytic Diels-Alder reaction was to become the inspiration for the dramatic increase in activity in this field that we have witnessed in the twenty years since its appearance. It is the intent of this review to present the development of the field of asymmetric catalytic synthesis with chiral aluminum Lewis acids that includes those reports that have appeared in the literature up to the end of 1998. This review will not cover polymerization reactions or supported reactions. The latter will appear in a separate chapter in this handbook. [Pg.283]

The Diels-Alder reaction of methacrolein with 1,3-dienol derivatives can also be catalyzed by the BINOL-derived titanium complex, although the catalyst must be freed from molecular sieves (MS) to give the endo adduct with high enantioselectivity (Sch. 50) [131], because MS act as achiral catalysts in the Diels-Alder reaction. The asymmetric Diels-Alder reaction catalyzed by the MS-free (MS-(-)) BINOL-Ti complex (L) can be applied naphthoquinone derivatives as dienophiles to provide entry to the asymmetric synthesis of tetra- and anthracyclinone [132] aglycones (Sch. 51). The sense of asymmetric induction is exactly the same as that observed in the presence of MS in the asymmetric catalytic reactions described above. [Pg.829]

Pyrazole and 3,5-dimethylpyrazole were effective stoichiometric catalysts in the Baylis-Hillman reaction of cyclo-pentenone 892 with /i-nitrobenzaldehyde 893 in basic media to give adducts 894 in good yields (Equation 190) <2004TL5171>. An asymmetric borane reduction of ketones catalyzed by AT-hydroxyalkyl-Z-menthopyrazoles has been reported <2000JHC983>. 3-Aryl-/-menthopyrazoles 895 were assessed for their catalytic activity for asymmetric Diels-Alder reactions <2002JHC1235, 2003JHC773>. [Pg.119]

In the past Lewis acid-catalyzed [4+2] cycloaddition reactions of chiral alkyl acrylates have been systematically studied. Chiral auxiliaries derived from camphor, menthol and amino acids or from carbohydrates have been developed. Stereochemical and theoretical aspects of these chiral inductors have been intensively reviewed (see. Chapter 6). Asymmetric Diels-Alder reactions of chiral acrylamides derived from Ca-symmetrical secondary amines lead selectively to the cycloadducts in the presence of Lewis acids such as AICI3. In reactions of chiral auxiliaries derived from (iS)-proline and (iS)-prolinol excellent endo/exo selectivities and diastereoselectivities were obtained in the presence of catalytic amounts of Et2AlCl or TiCL. Cycloadducts of chiral crotonoyl derivatives derived from oxazolidinones 62, sultam 63 or for example (S)-lactate IS were obtained with high selectivities in the presence of Lewis acids such as Et2AICl. [Pg.51]

Corey, E. J. Catalytic Enantioselective Diels-Alder Reactions Methods, Mechanistic Fundamentals, Pathways, and Applications Anptew. Chem. IntEd. 2002, 41, 1560-1567. Fringuelli, F. Piermatti, O. Pizzo, F. Vaccaro, L. Recent Advances in Lewis Acid Catalyzed Diels-Alder Reactions in Aqueous Media Eur. J. Orpj. Chem. 2001, 439-455. Evans, D. A. Johnson, J. S. Diels-Alder Reactions Comprehensive Asymmetric Catalysis 1999, 5, 1177-1235. [Pg.201]

In 2012, a further evaluation of the gold(I)/chiral Brpnsted acid binary catalytic systems was carried out by the same research group [134]. In this report, the well-designed enynes 375 can be efficiently converted into 1,3-silyloxydienes 378 via Au(I) 377-catalyzed hydrosiloxylation, thus enabling subsequent asymmetric Diels-Alder reaction in the promotion of a phosphoramide 70b, affording polycyclic compounds 379 in high optical purties (Scheme 2.100). This relay catalytic cascade intramolecular hydrosiloxylation/asymmetric Diels-Alder reaction provides an unprecedented alternative to traditional Diels-Alder reactions. [Pg.114]

Kumaraswamy G, Ramakrishna G, Naresh P, Jagadeesh B, Sridhar B. A flexible enantioselective total synthesis of dio-spongins A and B and their enantiomers using catalytic hetero-Diels-Alder/Rh-catalyzed 1,4-addition and asymmetric transfer hydrogenation reactions as key steps. J. Org. Chem. 2009 74(21) 8468-8471. [Pg.955]

The Asymmetric Catalytic Diels-Alder Reaction Catalyzed by Base... [Pg.46]

To achieve catalytic enantioselective aza Diels-Alder reactions, choice of metal is very important. It has been shown that lanthanide triflates are excellent catalysts for achiral aza Diels-Alder reactions [5]. Although stoichiometric amounts of Lewis acids are often required, a small amount of the triflate effectively catalyzes the reactions. On the basis of these findings chiral lanthanides were used in catalytic asymmetric aza Diels-Alder reactions. The chiral lanthanide Lewis acids were first developed to realize highly enantioselective Diels-Alder reactions of 2-oxazolidin-l-one with dienes [6]. [Pg.188]

A more versatile method to use organic polymers in enantioselective catalysis is to employ these as catalytic supports for chiral ligands. This approach has been primarily applied in reactions as asymmetric hydrogenation of prochiral alkenes, asymmetric reduction of ketone and 1,2-additions to carbonyl groups. Later work has included additional studies dealing with Lewis acid-catalyzed Diels-Alder reactions, asymmetric epoxidation, and asymmetric dihydroxylation reactions. Enantioselective catalysis using polymer-supported catalysts is covered rather recently in a review by Bergbreiter [257],... [Pg.519]

The development and application of catalytic enantioselective 1,3-dipolar cycloadditions is a relatively new area. Compared to the broad application of asymmetric catalysis in carbo- and hetero-Diels-Alder reactions (337,338), which has evolved since the mid-1980s, the use of enantioselective metal catalysts in asymmetric 1,3-dipolar cycloadditions remained almost unexplored until 1993 (5). In particular, the asymmetric metal-catalyzed reactions of nitrones with alkenes has received considerable attention during the past 5 years. [Pg.864]

Surprisingly, the catalytic potential of proline (1) in asymmetric aldol reactions was not explored further until recently. List et al. reported pioneering studies in 2000 on intermolecular aldol reactions [14, 15]. For example, acetone can be added to a variety of aldehydes, affording the corresponding aldols in excellent yields and enantiomeric purity. The example of iso-butyraldehyde as acceptor is shown in Scheme 1.4. In this example, the product aldol 13 was obtained in 97% isolated yield and with 96% ee [14, 15]. The remarkable chemo- and enantioselectivity observed by List et al. triggered massive further research activity in proline-catalyzed aldol, Mannich, Michael, and related reactions. In the same year, MacMillan et al. reported that the phenylalanine-derived secondary amine 5 catalyzes the Diels-Alder reaction of a,/>-un saturated aldehydes with enantioselectivity up to 94% (Scheme 1.4) [16]. This initial report by MacMillan et al. was followed by numerous further applications of the catalyst 5 and related secondary amines. [Pg.5]

CONTENTS Preface, Mark Lautens. Photocyclization and Photocycloaddition Reactions of 4- and 2-Pyrones, Frederick G. West. Intramolecular [4+3] Cycloaddition Reactions, Michael Harmata. Lewis Acid Catalyzed [2+2] Cycloaddition Reactions of Vinyl Sulfides and Their Analogues Catalytic Asymmetric [2+2] Cycloaddition Reactions, Koichi Narasaka and Yujiro Hayashi. Vinylboranes as Diels-Alder Dienophiles, Daniel A. Singleton. Preparation and Exo-Selective [4+2] Cycloaddition Reactions of Cobaloxime-Substituted 1,3-Dienes, P... [Pg.227]


See other pages where Catalytic asymmetric Diels-Alder catalyzed is mentioned: [Pg.9]    [Pg.324]    [Pg.315]    [Pg.193]    [Pg.289]    [Pg.22]    [Pg.207]    [Pg.119]    [Pg.375]    [Pg.284]    [Pg.1141]    [Pg.269]    [Pg.707]    [Pg.1141]    [Pg.580]    [Pg.250]    [Pg.17]    [Pg.411]    [Pg.229]    [Pg.343]    [Pg.82]    [Pg.171]    [Pg.58]   


SEARCH



Asymmetric Diels-Alder

Asymmetric catalytic

Diels catalytic asymmetric

© 2024 chempedia.info