Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts temperature dependent

The coefficient k is called the specific rate coefficient. It is taken to be independent of the concentrations of the reactants but does depend primarily on temperature and the nature and concentration of catalysts. Temperature dependence usually is represented by... [Pg.586]

Figure 3.28 Steam reforming of ethane. Ni, MgO catalyst, temperature dependence of reaction order for water ain power-law kinetic expression [381]. Figure 3.28 Steam reforming of ethane. Ni, MgO catalyst, temperature dependence of reaction order for water ain power-law kinetic expression [381].
The choice of reactor temperature depends on many factors. Generally, the higher the rate of reaction, the smaller the reactor volume. Practical upper limits are set by safety considerations, materials-of-construction limitations, or maximum operating temperature for the catalyst. Whether the reaction system involves single or multiple reactions, and whether the reactions are reversible, also affects the choice of reactor temperature, as we shall now discuss. [Pg.41]

Reduction of vinylic and allylic compounds without hydrogenolysis may present a problem. The ratio of olefin saturation to hydrogenolysis depends importantly on catalyst, temperature, solvent, and pH. In both classes of compounds, hydrogenolysis is favored by polar solvents, acid, and elevated temperatures hydrogenation, by nonpolar solvents and low temperatures. [Pg.41]

Temperature-dependent phase behavior was first applied to separate products from an ionic liquid/catalyst solution by de Souza and Dupont in the telomerization of butadiene and water [34]. This concept is especially attractive if one of the substrates shows limited solubility in the ionic liquid solvent. [Pg.232]

The kinetic expression was derived by Akers and White (10) who assumed that the rate-controlling factor in methane formation was the reaction between the adsorbed reactants to form adsorbed products. However, the observed temperature-dependence of the rate was small, which indicates a low activation energy, and diffusion was probably rate-controlling for the catalyst used. [Pg.21]

Figure 2.3. Catalysis (0), classical promotion ( ), electrochemical promotion ( , ) and electrochemical promotion of a classically promoted (sodium doped) ( , ) Rh catalyst deposited on YSZ during NO reduction by CO in presence of gaseous 02.14 The Figure shows the temperature dependence of the catalytic rates and turnover frequencies of C02 (a) and N2 (b) formation under open-circuit (o.c.) conditions and upon application (via a potentiostat) of catalyst potential values, UWr, of+1 and -IV. Reprinted with permission from Elsevier Science. Figure 2.3. Catalysis (0), classical promotion ( ), electrochemical promotion ( , ) and electrochemical promotion of a classically promoted (sodium doped) ( , ) Rh catalyst deposited on YSZ during NO reduction by CO in presence of gaseous 02.14 The Figure shows the temperature dependence of the catalytic rates and turnover frequencies of C02 (a) and N2 (b) formation under open-circuit (o.c.) conditions and upon application (via a potentiostat) of catalyst potential values, UWr, of+1 and -IV. Reprinted with permission from Elsevier Science.
The obvious question then arises as to whether the effective double layer exists before current or potential application. Both XPS and STM have shown that this is indeed the case due to thermal diffusion during electrode deposition at elevated temperatures. It is important to remember that most solid electrolytes, including YSZ and (3"-Al2C)3, are non-stoichiometric compounds. The non-stoichiometry, 8, is usually small (< 10 4)85 and temperature dependent, but nevertheless sufficiently large to provide enough ions to form an effective double-layer on both electrodes without any significant change in the solid electrolyte non-stoichiometry. This open-circuit effective double layer must, however, be relatively sparse in most circumstances. The effective double layer on the catalyst-electrode becomes dense only upon anodic potential application in the case of anionic conductors and cathodic potential application in the case of cationic conductors. [Pg.272]

The regioselectivity of the Diels-Alder reaction depends on the number and nature of substituents on diene and dienophile and on the reaction conditions (catalyst, temperature, pressure, solvent, etc.). Generally, 1- and 2-substituted... [Pg.11]

Do not infer from the above discussion that all the catalyst in a fixed bed ages at the same rate. This is not usually true. Instead, the time-dependent effectiveness factor will vary from point to point in the reactor. The deactivation rate constant kj) will be a function of temperature. It is usually fit to an Arrhenius temperature dependence. For chemical deactivation by chemisorption or coking, deactivation will normally be much higher at the inlet to the bed. In extreme cases, a sharp deactivation front will travel down the bed. Behind the front, the catalyst is deactivated so that there is little or no conversion. At the front, the conversion rises sharply and becomes nearly complete over a short distance. The catalyst ahead of the front does nothing, but remains active, until the front advances to it. When the front reaches the end of the bed, the entire catalyst charge is regenerated or replaced. [Pg.371]

Herrmann et al. reported for the first time in 1996 the use of chiral NHC complexes in asymmetric hydrosilylation [12]. An achiral version of this reaction with diaminocarbene rhodium complexes was previously reported by Lappert et al. in 1984 [40]. The Rh(I) complexes 53a-b were obtained in 71-79% yield by reaction of the free chiral carbene with 0.5 equiv of [Rh(cod)Cl]2 in THF (Scheme 30). The carbene was not isolated but generated in solution by deprotonation of the corresponding imidazolium salt by sodium hydride in liquid ammonia and THF at - 33 °C. The rhodium complexes 53 are stable in air both as a solid and in solution, and their thermal stability is also remarkable. The hydrosilylation of acetophenone in the presence of 1% mol of catalyst 53b gave almost quantitative conversions and optical inductions up to 32%. These complexes are active in hydrosilylation without an induction period even at low temperatures (- 34 °C). The optical induction is clearly temperature-dependent it decreases at higher temperatures. No significant solvent dependence could be observed. In spite of moderate ee values, this first report on asymmetric hydrosilylation demonstrated the advantage of such rhodium carbene complexes in terms of stability. No dissociation of the ligand was observed in the course of the reaction. [Pg.210]

The partial differential equations describing the catalyst particle are discretized with central finite difference formulae with respect to the spatial coordinate [50]. Typically, around 10-20 discretization points are enough for the particle. The ordinary differential equations (ODEs) created are solved with respect to time together with the ODEs of the bulk phase. Since the system is stiff, the computer code of Hindmarsh [51] is used as the ODE solver. In general, the simulations progressed without numerical problems. The final values of the rate constants, along with their temperature dependencies, can be obtained with nonlinear regression analysis. The differential equations were solved in situ with the backward... [Pg.172]

In a recent paper we used the temperature sequence of EXAFS measurements of the reduced catalyst In H2 to determine the temperature dependence of the disorder. (7 ) Comparable data was obtained for Ft metal over the same temperature range. The analysis proceeded by fitting the 1st coordination shell catalyst data to a 2-shell model In which the 1st shell was assumed to be that part of the Ft cluster... [Pg.283]

GP 8] [R 7] Ignition occurs at a rhodium catalyst at catalyst temperatures between 550 and 700 °C, depending on the process parameters [3]. Total oxidation to water and carbon dioxide is favored at low conversion (< 10%) prior to ignition. Once ignited, the methane conversion increases and hence the catalyst temperature increases abruptly. [Pg.323]


See other pages where Catalysts temperature dependent is mentioned: [Pg.553]    [Pg.553]    [Pg.553]    [Pg.553]    [Pg.479]    [Pg.302]    [Pg.553]    [Pg.553]    [Pg.553]    [Pg.553]    [Pg.479]    [Pg.302]    [Pg.2114]    [Pg.2696]    [Pg.163]    [Pg.25]    [Pg.274]    [Pg.481]    [Pg.481]    [Pg.331]    [Pg.511]    [Pg.481]    [Pg.20]    [Pg.53]    [Pg.277]    [Pg.226]    [Pg.525]    [Pg.165]    [Pg.168]    [Pg.74]    [Pg.160]    [Pg.188]    [Pg.433]    [Pg.149]    [Pg.16]    [Pg.281]    [Pg.28]    [Pg.32]    [Pg.305]    [Pg.649]    [Pg.317]    [Pg.38]   


SEARCH



Catalyst dependence

Catalyst dependence dependency

Temperature catalyst

© 2024 chempedia.info