Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts overview

Reviews Table 1. Catalyst Overview Chem. Mater., Vol. 20, No. 1, 2008 37... [Pg.3]

Jankowski et al (1978) discuss in detail the great variety of gradientless reactors proposed by several authors with a pictorial overview in their paper. All of these reactors can be placed in a few general categories (1) moving catalyst basket reactors, (2) external recycle reactors, and (3) internal recycle reactors. [Pg.45]

During our research in this field of small-ring heterocycles we found that functionahzed aziridines are attractive chiral catalysts, e.g., in the diethylzinc addition to aldehydes. Aspects of such uses of aziridines will be discussed as well. This overview does not pretend to be an exhaustive coverage of all existing literature on small-ring aza-heterocycles as that would require a separate monograph. Instead, emphasis is put on functionahzed three-membered aza-heterocycles, that were investigated in the author s laboratory [1], and relevant related literature. The older literature on these heterocycles is adequately summarized in some extensive reviews [2]. Chiral aziridines have been reviewed recently by Tanner [3], by Osborn and Sweeney [4], and by McCoull and Davis [5]. [Pg.94]

Abstract After an overview of chiral urea and thiourea synthetic methods, this review describes the main applications of urea and thiourea complexes in asymmetric catalysis. Some recent examples of thioureas as catalysts are also presented. Coordination chemistry of ureas and thioureas is briefly discussed. [Pg.232]

Catalytic hydrogenation is typically carried out in slurry reactors, where finely dispersed catalyst particles (<100 (tm) are immersed in a dispersion of gas and liquid. It has, however, been demonstrated that continuous operation is possible, either by using trickle bed [24] or monoHth technologies [37]. Elevated pressures and temperatures are needed to have a high enough reaction rate. On the other hand, too high a temperature impairs the selectivity of the desired product, as has been demonstrated by Kuusisto et al. [23]. An overview of some feasible processes and catalysts is shown in Table 8.1. [Pg.176]

This has been a brief overview of a rich field. Details of enzyme stracture and catalytic activity are studied in laboratories worldwide. Moreover, genetic engineering makes it possible to manufacture key enzymes in large quantities, so enzymes may become industrial catalysts that accomplish reactions rapidly and selectively. [Pg.1115]

Because of its industrial importance and the relative simplicity of its reaction mechanism and the catalyst system, much fundamental work has been done on this reaction. For an overview we refer the reader to R.A. van Santen and H.P.C.E. Kui-pers, Adv. Catal. 35 (1987) 265. [Pg.371]

In the USA, the Clean Air Act of 1970 established air-quality standards for six major pollutants particulate matter, sulfur oxides, carbon monoxide, nitrogen oxides, hydrocarbons, and photochemical oxidants. It also set standards for automobile emissions - the major source of carbon monoxide, hydrocarbons, and nitrogen oxides. An overview of the major standards is given in Tab. 10.2. The levels of, for example, the European Union (1996) are easily achieved with the present catalysts. The more challenging standards, up to those for the ultralow emission vehicle, are within reach, but zero-emission will probably only be attainable for a hydrogen-powered vehicle. [Pg.378]

Refer to catalogues or websites of catalyst support producers and compile an overview of commercially available support materials and the range of surface areas per gram in which these are available. [Pg.407]

Support materials are commonly u.sed in heterogeneous catalysis. Their major function is to maximize the dispersion of the active phase by providing a large surface area over which the active phase can be distributed. In this way the cataly.st material is shaped into a form suitable for use in technical reactors. Supports are not always chemically inert they can also show certain catalytic activity and often they act as a stabilizer for the actual active phase. A number of materials are u.sed as catalyst supports. Table 3.2 gives an overview. [Pg.71]

K. Tani and Y. Kataoka, begin their discussion with an overview about the synthesis and isolation of such species. Many of them contain Ru, Os, Rh, Ir, Pd, or Pt and complexes with these metals appear also to be the most active catalysts. Their stoichiometric reactions, as well as the progress made in catalytic hydrations, hydroal-coxylations, and hydrocarboxylations of triple bond systems, i.e. nitriles and alkynes, is reviewed. However, as in catalytic hydroaminations the holy grail", the addition of O-H bonds across non-activated C=C double bonds under mild conditions has not been achieved yet. [Pg.289]

The pore size of the catalyst plays an important role as the reactants and the products must be able to lit inside the catalyst to take full advantage of the total surface area available. The pore size of metal oxides are sufficiently large (>2 nm) to facihtate the mass transfer into and from the catalyst pores. This compensates for their lower acidity compared to other sohd acids. Table 33.1 gives an overview of the tested catalysts, showing their pros/cons with respect to the fatty acid esterification reaction. [Pg.294]

We may thus conclude after this short overview on DeNO technologies that NH3-SCR using catalysts based on V-W-oxides supported on titania is a well-established technique for stationary sources of power plants and incinerators, while for other relevant sources of NO, such as nitric acid tail gases, where emissions are characterized from a lower temperature and the presence of large amounts of NOz, alternative catalysts based on transition metal containing microporous materials are possible. Also, for the combined DeNO -deSO, alternative catalysts would be necessary, because they should operate in the presence of large amounts of SO,.. Similarly, there is a need to develop new/improved catalysts for the elimination of NO in FCC emissions, again due to the different characteristics of the feed with respect to emissions from power plants. [Pg.6]


See other pages where Catalysts overview is mentioned: [Pg.50]    [Pg.71]    [Pg.103]    [Pg.175]    [Pg.176]    [Pg.50]    [Pg.71]    [Pg.103]    [Pg.175]    [Pg.176]    [Pg.247]    [Pg.95]    [Pg.114]    [Pg.228]    [Pg.432]    [Pg.157]    [Pg.86]    [Pg.223]    [Pg.246]    [Pg.86]    [Pg.94]    [Pg.158]    [Pg.189]    [Pg.363]    [Pg.393]    [Pg.274]    [Pg.263]    [Pg.741]    [Pg.109]    [Pg.23]    [Pg.64]    [Pg.216]    [Pg.253]    [Pg.37]    [Pg.246]    [Pg.206]    [Pg.53]    [Pg.96]    [Pg.100]    [Pg.137]   
See also in sourсe #XX -- [ Pg.439 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 ]




SEARCH



Chiral catalysts: overview

Heterogeneous catalysts overview

Historical Development and Overview of Catalysts

Homogeneous catalysts overview

Iron catalysts overview

Overview of catalysts and oxidants

Transition metal catalysts overview

© 2024 chempedia.info