Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron catalysts overview

We have discussed the structure and synthesis of the library of molecular catalysts for polymerization in Section 11.5.1. In the present section we want to take a closer look at the performance of the catalyst library and discuss the results obtained [87], The entire catalyst library was screened in a parallel autoclave bench with exchangeable autoclave cups and stirrers so as to remove the bottleneck of the entire workflow. Ethylene was the polymerizable monomer that was introduced as a gas, the molecular catalyst was dissolved in toluene and activated by methylalumoxane (MAO), the metal to MAO ratio was 5000. All reactions were carried out at 50°C at a total pressure of 10 bar. The activity of the catalysts was determined by measuring the gas uptake during the reaction and the weight of the obtained polymer. Figure 11.40 gives an overview of the catalytic performance of the entire library of catalysts prepared. It can clearly be seen that different metals display different activities. The following order can be observed for the activity of the different metals Fe(III) > Fe(II) > Cr(II) > Co(II) > Ni(II) > Cr(III). Apparently iron catalysts are far more active than any of the other central metal... [Pg.418]

FIGURE 12.1, Overview of the sample graphitization process. Sample material containing is combusted in the presence of CuO, CO2 is cryogenically extracted, and CO2 is reduced to graphite using a cobalt or iron catalyst. [Pg.261]

Since the discovery of the synthesis at the Kaiser Wilhelm Institute (Germany) in 1923 by Franz Fischer and Hans Tropsch, the kinetics of the Fischer-Tropsch synthesis have been studied extensively and many attempts have been made to describe the rate of reaction, either by using power law rate equations or equations based on certain mechanistic assumptions. In most cases, the rate of H2 and CO consumption is correlated with the (measurable) gas phase concentrations or partial pressures of H2, CO, and/or H2O. An overview of rate equations for iron catalysts is given by Huff and Satterfield (1984a) and for cobalt catalysts by Yates and Satterfield (1991). Details on the kinetics and reaction mechanism are, for example, discussed by Donnelly and Satterfield (1989), Dry (1982), Fernandes (2005), Huff and Satterfield (1984b), Post et al. (1989), Riedel et al. (1999), Schulz and Claeys (1999), Schulz et al. (1999), Van Steen and Schulz (1999), and Van Steen (1993). [Pg.665]

For more general overviews of post-metallocene a-olefin polymerisation catalysts, the reader is referred to a series of reviews [8, 9, 10, 11, 12], while recent reviews pertaining to the importance of 2,6-bis(imino)pyridines and to iron and cobalt systems per se have also been documented [13, 14],... [Pg.110]

In comparison to most other methods in surface science, STM offers two important advantages STM gives local information on the atomic scale and it can do so in situ [51]. As STM works best on flat surfaces, applications of the technique in catalysis concern models for catalysts, with the emphasis on metal single crystals. A review by Besenbacher gives an excellent overview of the possibilities [52], Nevertheless, a few investigations on real catalysts have been reported also, for example on the iron ammonia synthesis catalyst, on which... [Pg.206]

Raney predicted that many other metal catalysts could be prepared with this technique, but he did not investigate them [8], Copper and cobalt catalysts were soon reported by others [4,5], These catalysts were not nearly as active as Raney s nickel catalyst and therefore have not been as popular industrially however they offer some advantages such as improved selectivity for some reactions. Skeletal iron, ruthenium and others have also been prepared [9-13], Wainwright [14,15] provides two brief overviews of skeletal catalysts, in particular skeletal copper, for heterogeneous reactions. Table 5.1 presents a list of different skeletal metal catalysts and some of the reactions that are catalyzed by them. [Pg.142]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]


See other pages where Iron catalysts overview is mentioned: [Pg.532]    [Pg.632]    [Pg.94]    [Pg.53]    [Pg.291]    [Pg.920]    [Pg.627]    [Pg.217]    [Pg.40]    [Pg.47]    [Pg.354]    [Pg.393]    [Pg.541]    [Pg.282]    [Pg.747]    [Pg.31]    [Pg.8]    [Pg.85]    [Pg.248]    [Pg.910]    [Pg.327]    [Pg.216]   
See also in sourсe #XX -- [ Pg.439 ]




SEARCH



Catalysts overview

Iron, catalyst

© 2024 chempedia.info