Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts reaction catalysts for

Immobilised ionic liquids as catalysts for Friedel-Crafts reactions... [Pg.86]

Highly Lewis-acidic chloroaluminate ionic liquids (ILs) are well known to be both versatile solvents and effective catalysts for Friedel-Crafts reactions [1,2]. Tailoring the physical and chemical properties of the ILs to the needs of a specific reaction allows for a high diversity of applications [3,4]. We could show that immobilising these ILs on inorganic supports yields very active catalysts for alkylation reactions. The immobilisation of ionic liquids leads to novel Lewis-acidic catalysts (NLACs). The methods presented include the method of incipient wetness (method 1, further on called NLAC I), which has been introduced in detail by Hoelderich et al. f5], but focus of this presentation lies on the methods 2 (NLAC II) and 3 (NLAC III). [Pg.242]

Anhydrous Lewis acids themselves are suitable catalysts for Friedel-Crafts reactions of compounds containing n-donor groups. However, they are generally insufficient as acceptors in reactions of alkenes or alkynes or isomerization of hydrocarbons. These reactions generally require a cocatalyst, such as a hydrogen halide or other cationic species. [Pg.295]

Uses. Boron triduoride is an excellent Lewis acid catalyst for numerous types of organic reactions. Its advantages are ease of handling as a gas and the absence of undesirable tarry by-products. As an electrophilic molecule, it is an excellent catalyst for Friedel-Crafts and many other types of reactions (63-65) (see Friedel-craftsreactions). [Pg.162]

As catalysts Lewis acids such as AICI3, TiCU, SbFs, BF3, ZnCh or FeCl3 are used. Protic acids such as FI2SO4 or FIF are also used, especially for reaction with alkenes or alcohols. Recent developments include the use of acidic polymer resins, e.g. Nafion-Fl, as catalysts for Friedel-Crafts alkylations and the use of asymmetric catalysts. ... [Pg.123]

Room temperature ionic liquids (RTILs), such as those based on A,A-dialkylimidazolium ions, are gaining importance (Bradley, 1999). The ionic liquids do not evaporate easily and thus there are no noxious fumes. They are also non-inflammable. Ionic liquids dissolve catalysts that are insoluble in conventional organic chemicals. IFP France has developed these solvents for dimerization, hydrogenation, isomerization, and hydroformylation reactions without conventional solvents. For butene dimerization a commercial process exists. RTILs form biphasic systems with the catalyst in the RTIL phase, which is immiscible with the reactants and products. This system is capable of being extended to a list of organometallic catalysts. Industrial Friedel-Crafts reactions, such as acylations, have been conducted and a fragrance molecule tra.seolide has been produced in 99% yield (Bradley, 1999). [Pg.148]

Dangerous materials may require special equipment. Chlorination with gaseous chlorine requires quite expensive storage facilities. Chlorination with chlorine, thionyl chloride, sulphuryl chloride, phosphorus oxychloride, phosphorus trichloride, or phosphorus pentachloride, all of which are fairly hazardous, requires off-gas treatment. Some of these reactants can be recycled. Pyrophoric solids such as hydrogenation catalysts, anhydrous aluminium trichloride for Friedel-Crafts reactions, or hydrides used as reducing agents should usually be handled using special facilities. Therefore, all of the above proce.sses are usually carried out in dedicated plants. [Pg.438]

An intermediate acylnickel halide is first formed by oxidative addition of acyl halides to zero-valent nickel. This intermediate can attack unsaturated ligands with subsequent proton attack from water. It can give rise to benzyl- or benzoin-type coupling products, partially decarbonylate to give ketones, or react with organic halides to give ketones as well. Protonation of certain complexes can give aldehydes. Nickel chloride also acts as catalyst for Friedel-Crafts-type reactions. [Pg.222]

Non-chlorinated Lewis acids, such as scandium triflate, were found to be good catalysts for Friedel-Crafts alkylation reactions (167). Although no aromatic hydrocarbon alkylation occurred in CH2CI2, [BMIMJPFg, Sc(OTf)3 catalyzed the alkylation of benzene with high yields of the monoalkylated product. The lower acidity of the ionic liquid led to fewer byproducts and therefore higher yields. The products were separated by simple decantation and the catalyst was reused. [Pg.194]

A 1 2 mixture of l-methyl-3-ethylimidazolium chloride and aluminum trichloride, an ionic liquid that melts below room temperature, has been recommended recently as solvent and catalyst for Friedel-Crafts alkylation and acylation reactions of aromatics (Boon et al., 1986), and as solvent for UV/Vis- and IR-spectroscopic investigations of transition metal halide complexes (Appleby et al., 1986). The corresponding 1-methyl-3-ethylimidazolium tetrachloroborate (as well as -butylpyridinium tetrachlo-roborate) represent new molten salt solvent systems, stable and liquid at room temperature (Williams et al., 1986). [Pg.88]

Acidic chloroaluminate ionic liquids were used as reaction media for Friedel-Crafts reactions as early as 1976 [34], Systematic investigations into Friedel-Crafts alkylations of benzene with the same acidic systems followed in 1986 by Wilkes et al. [35]. The alkylation of benzene with alkenes in acidic imidazolium chloroaluminate melts was disclosed in a patent by BP Chemicals in 1994 [36]. Here, as advantages over the reaction with aluminum trichloride in organic solvents, claims are made regarding the easy isolation of the product, the practically total reusability of the liquid catalyst and the better selectivity to the desired products. [Pg.108]

The use of immobilised ILs as catalysts would result in the easy separation of the catalyst from the reaction mixture, allowing its fast reuse and avoiding the generation of contaminated waste and its subsequent treatment. Ionic liquids have already been proposed as catalysts for Friedel-Crafts alkylation of benzene with olefins in order to produce LABs32-35. They show Lewis acidic properties when a Lewis acid (e.g. [Pg.86]

Lin JH, Zhang CP, Zhu ZQ et al (2009) A novel pyrrohdinium ionic liquid with 1,1,2,2-tetra-fluoro-2-(l,l,2,2-tetrafluoroethoxy)ethanesulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel-Crafts alkylations of indoles with nitroalkenes. J Fluorine Chem 130 394-398... [Pg.63]

Maximum effort has been directed toward the use of solid acid catalysts. In fact, heterogeneous catalysts can be easily separated from the reaction mixture and reused they are generally not corrosive and do not produce problematic side products. Different classes of materials have been studied and utilized as heterogeneous catalysts for Friedel-Crafts acylations these include zeolites (acid treated), metal oxides, and heteropoly acids already utilized in hydrocarbon reactions. Moreover, the application of clays, perfluorinated resinsulfonic acids, and supported (fluoro) sulfonic acids, mainly exploited in the production of fine chemicals, are the subject of intensive studies in this area. [Pg.5]


See other pages where Friedel-Crafts reaction catalysts for is mentioned: [Pg.523]    [Pg.295]    [Pg.477]    [Pg.96]    [Pg.1215]    [Pg.62]    [Pg.18]    [Pg.206]    [Pg.29]    [Pg.523]    [Pg.295]    [Pg.477]    [Pg.96]    [Pg.1215]    [Pg.62]    [Pg.18]    [Pg.206]    [Pg.29]    [Pg.565]    [Pg.1630]    [Pg.183]    [Pg.158]    [Pg.125]    [Pg.1260]    [Pg.266]    [Pg.89]    [Pg.1900]    [Pg.555]    [Pg.400]    [Pg.173]    [Pg.36]    [Pg.262]   
See also in sourсe #XX -- [ Pg.708 ]




SEARCH



Catalyst Friedel-Crafts reaction

Catalysts Friedel Crafts

Friedel Crafts catalysts for

Friedel catalyst

Friedel-Crafts alkylation reactions catalysts for

© 2024 chempedia.info