Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst supports, properties

Table 1 Characterization of supported metal catalysts Support properties... Table 1 Characterization of supported metal catalysts Support properties...
Catalytic properties are dependent on physical form, principally the exposed surface area which is a function of particle size. Industrial PGM catalysts are in the form of finely divided powder, wine, or gauze, or supported on substrates such as carbon or alumina (see Catalysis Catalysts, supported). [Pg.172]

Transition aluminas are good catalyst supports because they are inexpensive and have good physical properties. They are mechanically stable, stable at relatively high temperatures even under hydrothermal conditions, ie, in the presence of steam, and easily formed in processes such as extmsion into shapes that have good physical strength such as cylinders. Transition aluminas can be prepared with a wide range of surface areas, pore volumes, and pore size distributions. [Pg.173]

The pore-size distribution and the nature of the pores in catalyst supports and hence the catalysts derived from them are important properties that significantly affect catalyst performance (16). In most cases, catalyst designers prefer an open-pore stmcture, that is, pores that have more than one opening, and a pore size as uniform as possible in order to obtain maximum utilization of the available pore volume. This can be achieved by careful choice of raw materials and processing conditions. [Pg.194]

In the development phase of catalyst research, testing of the catalyst s chemical and physical properties and evaluation of the catalyst s performance ate two essential tasks. In the manufacturing process, many of the same analyses and evaluations are used for quaHty assurance. A number of the testing procedures outlined eadier for catalyst supports can also be appHed to catalysts (32). [Pg.196]

It will also be shown that the absolute electrode potential is not a property of the electrode but is a property of the electrolyte, aqueous or solid, and of the gaseous composition. It expresses the energy of solvation of an electron at the Fermi level of the electrolyte. As such it is a very important property of the electrolyte or mixed conductor. Since several solid electrolytes or mixed conductors based on ZrC>2, CeC>2 or TiC>2 are used as conventional catalyst supports in commercial dispersed catalysts, it follows that the concept of absolute potential is a very important one not only for further enhancing and quantifying our understanding of electrochemical promotion (NEMCA) but also for understanding the effect of metal-support interaction on commercial supported catalysts. [Pg.333]

Consequently the absolute potential is a material property which can be used to characterize solid electrolyte materials, several of which, as discussed in Chapter 11, are used increasingly in recent years as high surface area catalyst supports. This in turn implies that the Fermi level of dispersed metal catalysts supported on such carriers will be pinned to the Fermi level (or absolute potential) of the carrier (support). As discussed in Chapter 11 this is intimately related to the effect of metal-support interactions, which is of central importance in heterogeneous catalysis. [Pg.358]

The preparation of novel triazole-containing 20-22 membered macrocyclic azacrown ether-thioethers was reported <96JCR(S)182> and the first selective synthetic method fra the synthesis of dicyanotriazolehemiporhyrazines was published <96JOC6446>. 1,2,4-Triazole-containing polyimide beads were prepared and employed as Mo(VI) epoxidation catalyst supports, liie 1,2,4-nitronyl nitroxide 29 was also synthesized and found to have remarkable magnetic properties <96AM60>. [Pg.163]

The BET area of a catalyst or a catalyst support is one of the first properties one wants to know in catalyst development. All industrial laboratories and many academic laboratories possess equipment for measuring this property. [Pg.187]

Poisoning of deNOx catalysts by SO2 could also be a problem since diesel fuels contain small amounts of sulfur compounds. Only a few studies deal with this subject [11-13]. It appears from the literature that for Cu catalysts the use of MFI as a support reduces the inhibition by SO2. Support effects also appear in the case of Co since Co/MFI is much less sensitive to SO2 than Co/ferrierite [13]. Since this support effect may be related to acidity, it becomes important, to investigate the influence of SO2 on the properties of Cu catalysts supported on Si02, AI2O3, MFI, BEA and unpromoted or sulfate promot Ti02 and Zr02- These latter have been reported active for deNOx [14]. [Pg.622]

It was found in the 1960s that disperse platinum catalyst supported by certain oxides will in a number of cases be more active than a similar catalyst supported by carbon black or other carbon carrier. At platinum deposits on a mixed carrier of WO3 and carbon black, hydrogen oxidation is markedly accelerated in acidic solutions (Hobbs and Tseung, 1966). This could be due to a partial spillover of hydrogen from platinum to the oxide and formation of a tungsten bronze, H WOj (0 < a < 1), which according to certain data has fair catalytic properties. [Pg.539]

Catalyst redox properties, oxygen mobility and supported metal characterization... [Pg.112]

Dhainaut, F., Pietrzyk, S. and Granger, P. (2007) Kinetics of the NO + H2 reaction over supported noble metal based catalysts Support effect on their adsorption properties, Appl. Catal. B 70, 100. [Pg.321]

In the most effective, chirally modified catalytic systems, Pt/cinchonidine and Raney-Ni/tartaric acid, the enantioselectivity was also sensitive to the method of catalyst preparation and on support properties (5, 6). [Pg.525]

Early workers viewed carriers or catalyst supports as inert substances that provided a means of spreading out an expensive material like platinum or else improved the mechanical strength of an inherently weak material. The primary factors in the early selection of catalyst supports were their physical properties and their cheapness hence pumice, ground brick, charcoal, coke, and similar substances were used. No attention was paid to the possible influence of the support on catalyst behavior differences in behavior were attributed to variations in the distribution of the catalyst itself. [Pg.199]

One should distinguish between true catalyst supports and diluents. A catalyst support (or carrier) is a material on which a thin layer of catalyst is deposited a diluent is an inert material thoroughly mixed with the catalyst to enhance the binding properties of a powdered catalyst or to assist in pelleting or extrusion fabrication procedures. [Pg.200]

Nafion, a perfluorinated sulfonated polymer, is a typical example of an ion-exchangeable resin with high promise as a catalyst support. Its properties are significantly different from those of common polymers (stability towards strong bases, and strong oxidizing and reducing acids and thermal stability up to at least 120 °C if the counter ion is a proton, and up to 200-235 °C if it is a... [Pg.450]

Combined with appropriate amorphous carbon precursors graphite intercalation compounds could be used in one-stage process of production of carbon-carbon composites, which could possess attractive properties for such applications as supercapacitors elements, sorbents as well as catalyst supports and materials for energy- and gas-storage systems. [Pg.448]

The acid-base oxides such as aluminas were used as catalysts, adsorbents or catalyst supports and it was interesting to know the surface acid-base properties of these catalysts. [Pg.221]


See other pages where Catalyst supports, properties is mentioned: [Pg.25]    [Pg.25]    [Pg.25]    [Pg.25]    [Pg.2760]    [Pg.407]    [Pg.330]    [Pg.3]    [Pg.153]    [Pg.529]    [Pg.194]    [Pg.195]    [Pg.95]    [Pg.199]    [Pg.57]    [Pg.244]    [Pg.15]    [Pg.475]    [Pg.265]    [Pg.297]    [Pg.609]    [Pg.741]    [Pg.753]    [Pg.72]    [Pg.216]    [Pg.223]    [Pg.225]    [Pg.392]    [Pg.549]    [Pg.97]    [Pg.124]    [Pg.99]    [Pg.170]    [Pg.234]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Catalyst properties

Chromium/silica catalyst support properties

Solid support catalysts resin properties

Supported-metal catalysts chemisorption properties

© 2024 chempedia.info