Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst continued titanium oxide

Exploration of alkaline earth/metal oxide catalysts and other metal/metal oxide catalysts has been continued at Union Carbide. As an example, after over 350 hours of methane coupling with a 5 wt% barium carbonate on titanium oxide (with ethyl chloride in the feed gas), a C2 yield of 22%, a Cj selectivity of 58%, and an ethylene/ethane ratio of 8 1 were obtained. The coupling catalysts were comparable in selectivity, activity, and Cj yield to the better literature catalysts, but provide hundreds of hours of stable operation in the oxidation of methane to Cj s. These catalysts require the presence of a small amount of halides, either as a catalyst component or as a periodic or continuous additive to the catalyst. The chloride appears to serve three distinct roles, resulting in suppression of carbon dioxide formation, increased rates to Cg products, and higher ethylene-to-ethane product ratios. There have been numerous other recent reports. [Pg.197]

Dialkylaminoethyl acryhc esters are readily prepared by transesterification of the corresponding dialkylaminoethanol (102,103). Catalysts include strong acids and tetraalkyl titanates for higher alkyl esters and titanates, sodium phenoxides, magnesium alkoxides, and dialkyitin oxides, as well as titanium and zirconium chelates, for the preparation of functional esters. Because of loss of catalyst activity during the reaction, incremental or continuous additions may be required to maintain an adequate reaction rate. [Pg.156]

Eigure 3 is a flow diagram which gives an example of the commercial practice of the Dynamit Nobel process (73). -Xylene, air, and catalyst are fed continuously to the oxidation reactor where they are joined with recycle methyl -toluate. Typically, the catalyst is a cobalt salt, but cobalt and manganese are also used in combination. Titanium or other expensive metallurgy is not required because bromine and acetic acid are not used. The oxidation reactor is maintained at 140—180°C and 500—800 kPa (5—8 atm). The heat of reaction is removed by vaporization of water and excess -xylene these are condensed, water is separated, and -xylene is returned continuously (72,74). Cooling coils can also be used (70). [Pg.488]

The Matrix TiOa photocatalytic treatment system is a technology that destroys dissolved organic contaminants in water in a continuous-flow process at ambient temperature. The technology uses ultraviolet (UV) light and a titanium dioxide (TiOa) semiconductor catalyst to break hydroxide ions (OH ) and water (H2O) into hydroxyl radicals (OH ). The radicals oxidize the organic contaminants to form carbon dioxide, water, and halide ions (if the contaminant was halogenated). [Pg.769]

The porous titanosilicates have made a tremendous impact industrially as oxidation catalysts, however the mechanisms of their reactions are not fully understood. Nearly every solid-state analytical method has been applied to the problem. One reason for this is that the active titanium centres are only present in very low concentrations. Consequently, whilst there is a continuing search for new heterogeneous titanosilicates for selective oxidation, there has also been an interest in the preparation of homogeneous models for such materials, in an... [Pg.184]

In catalyzed photolysis either the catalyst molecule (Fig. 5-11, situation B) or the substrate molecule (Fig. 5-11, situation C), or both, are in an electronically excited state during the catalytic step. The electronically excited catalyst molecule is produced via photon absorption by a nominal catalyst (Fig. 5-11, situation B). The reaction of substrate to product is catalytic with, respect to the concentration of the electronically excited catalyst species. It is non-catalytic in photons and therefore, continuous irradiation is required to maintain the catalytic cycle. The quantum yield of product formation Product is equal to or less than unity. Titanium dioxide photocatalysis is the most widely applied example of this type, with Ti02 representing the nominal catalyst that must be electronically excited by photon absorption with formation of the electron hole pair Ti02 (hvb + cb), being the active catalytic species (cf Fig. 3-17 and Fig. 5-9, reaction 1). The oxidation of substrates by the combination of UV/VIS radiation and an appropriate photocatalyst is often called photocatalytic oxidation (PCO). [Pg.121]

Improvements of already existing oxidation processes are continuously made (in MAA manufacture, with the riser reactor by DuPont, or in oxychlorination, by Montecatini Technologic and ICI). In addition, and still more clearly demonstrating the dynamism of industrial catal5rtic oxidation, completely new catalysts are discovered, especially with the titanium silicalite which permits the synthesis of hydroquinone from phenol, selective epoxidations, oxidations of alcohols to aldehydes, and the manufacture of cyclohexanoneoxime. [Pg.56]

In Figure 2 it is shown that the reaction continues unabated in the absence of the solid catalyst, whereas the recovered catalyst has lost the major part of its activity. The leaching of the titanium was further investigated by ICP-OES analysis. The silicium/titanium ratio of the Ti-MCM-41 as-synthesised is 230, while after the reaction this ratio was increased till 4720. We found that the native catalyst was hydrolytically stable under aqueous conditions, whereas in the presence of hydrogen peroxide rapid leaching was observed. Apparently the titanium hydroperoxide is more sensitive to hydrolysis than the native catalyst. The homogeneous titanium species is apparently an oxidation catalyst. A recent paper on Ti-MCM-41 also reports Ti-leaching in the liquid phase . [Pg.388]

A promising and cleaner route was opened by the discovery of titanium silica-lite-1 (TS-1) [1,2]. Its successful application in the hydroxylation of phenol started a surge of studies on related catalysts. Since then, and mostly in recent years, the preparation of several other zeolites, with different transition metals in their lattice and of different structure, has been claimed [3]. Few of them have been tested for the hydroxylation of benzene and substituted benzenes with hydrogen peroxide. Ongoing research on suppoi ted metals and metal oxides has continued simultaneously. As a result, knowledge in the field of aromatic hydroxylation has experienced major advances in recent years. For the sake of simplicity, the subject matter will be ordered according to four classes of catalyst medium-pore titanium zeolites, large-pore titanium zeolites, other transition metal-substituted molecular sieves, and supported metals and mixed oxides. [Pg.538]

Although the main applications of zeohtic sohds in catalysis will continue to be as solid acids in the synthesis and transformations of petrochemicals and commodity chemicals they continue to be considered as catalysts and catalyst supports for a range of reactions of synthetic and industrial relevance. The most important of these are of titanium- and tin-containing solids in selective oxidations. Other well-studied reactions over zeohtes include light hydrocar-bons-to-aromatics (Ga-zeolites) selective catalytic reduction of NO (transition metal exchanged zeolites) C C bond formation (Pd zeohtes) selective alkane oxyfunctionalisation with air (MAPOs, M Mn, Fe, Co) and chiral catalysis over encapsulated chiral complexes. [Pg.399]


See other pages where Catalyst continued titanium oxide is mentioned: [Pg.278]    [Pg.278]    [Pg.369]    [Pg.47]    [Pg.661]    [Pg.304]    [Pg.93]    [Pg.249]    [Pg.45]    [Pg.399]    [Pg.411]    [Pg.411]    [Pg.329]    [Pg.304]    [Pg.152]    [Pg.26]    [Pg.261]    [Pg.262]    [Pg.156]    [Pg.56]    [Pg.158]    [Pg.999]    [Pg.144]    [Pg.476]    [Pg.487]    [Pg.341]    [Pg.61]    [Pg.69]    [Pg.81]    [Pg.261]    [Pg.73]    [Pg.42]    [Pg.4709]    [Pg.583]    [Pg.61]    [Pg.381]    [Pg.22]    [Pg.339]    [Pg.356]    [Pg.218]   
See also in sourсe #XX -- [ Pg.365 ]




SEARCH



Catalyst [continued)

Catalysts titanium

Continuous oxidation

Oxidation—continued

Oxides titanium oxide

Titanium oxide catalyst

Titanium oxidized

© 2024 chempedia.info