Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis olefin metathesis

To date a number of reactions have been carried out in ionic liquids [for examples, see Dell Anna et al. J Chem Soc, Chem Commun 434 2002 Nara, Harjani and Salunkhe Tetrahedron Lett 43 1127 2002 Semeril et al. J Chem Soc Chem Commun 146 2002 Buijsman, van Vuuren and Sterrenburg Org Lett 3 3785 2007]. These include Diels-Alder reactions, transition-metal mediated catalysis, e.g. Heck and Suzuki coupling reactions, and olefin metathesis reactions. An example of ionic liquid acceleration of reactions carried out on solid phase is given by Revell and Ganesan [Org Lett 4 3071 2002]. [Pg.77]

The mechanistic investigations presented in this section have stimulated research directed to the development of advanced ruthenium precatalysts for olefin metathesis. It was pointed out by Grubbs et al. that the utility of a catalyst is determined by the ratio of catalysis to the rate of decomposition [31]. The decomposition of ruthenium methylidene complexes, which attribute to approximately 95% of the turnover, proceeds monomolecularly, which explains the commonly observed problem that slowly reacting substrates require high catalyst loadings [31]. This problem has been addressed by the development of a novel class of ruthenium precatalysts, the so-called second-generation catalysts. [Pg.238]

Mulzer J, Ohler E (2004) Olefin Metathesis in Natural Product Syntheses. 13 269-366 Muniz K (2004) Planar Chiral Arene Chromium (0) Complexes as Ligands for Asymetric Catalysis. 7 205-223 Murai S, see Kakiuchi F (1999) 3 47-79... [Pg.293]

The outstanding performances of five-membered NHC ligands in organometallic chemistry and catalysis prompted Grubbs and co-workers to develop a novel stable four-membered NHC [64]. Following their interest in developing new ruthenium olefin metathesis catalysts, they synthesised and fully characterised complex 51 to study the impact of the architecturally unique NHC ligand on the activity of the Ru-based catalyst [65] (Fig. 3.20). In the RCM of 1 at 40°C in CH Cl with 51 (5 mol% catalyst), the reaction reached completion within 20 min, whereas less than 10 min are required for standard catalysts 14 and 16. It should be noted that catalysts 14 and 16 are able to complete the RCM of 1 with only 1 mol% catalyst at 30°C. [Pg.76]

During the past decade, NHCs have been coordinated to virtually all transition metals (TM) and studied in numerous catalytic transformations, pushing back the frontiers of catalysis. In this regard, the most salient examples are found in olefin metathesis and cross coupling reactions, and more recently in organocatalysis. [Pg.342]

With the renaissance in alkene chemistry engendered by the rising versatility of olefin metathesis in both fine chemical and commodity production, new methods for alkene isomerization are of increasing interest and importance. Alkene isomerization can be performed using Bronsted-Lowry acid or base catalysis (1). However, these reactions are limited to substrates which tolerate carbanionic or carbocation intermediates, and are susceptible to undesired side reactions. [Pg.379]

An olefin metathesis/double bond isomerization sequence can be promoted by the catalysis of in situ generated ruthenium hydride species from ruthenium complex 1 (Scheme 41 ).68... [Pg.88]

Ruthenium complexes B are stable in the presence of alcohols, amines, or water, even at 60 °C. Olefin metathesis can be realized even in water as solvent, either using ruthenium carbene complexes with water-soluble phosphine ligands [815], or in emulsions. These complexes are also stable in air [584]. No olefination of aldehydes, ketones, or derivatives of carboxylic acids has been observed [582]. During catalysis of olefin metathesis replacement of one phosphine ligand by an olefin can occur [598,809]. [Pg.144]

Following the strategy that has been very efficient for olefin metathesis, pal-ladium(II) complexes such as 62 containing both phosphine and NHC ligands were used in catalysis. Increased activities in the Mizoroki-Heck and in the... [Pg.43]

Promising applications for metal-NHC compounds in materials science and medicinal chemistry are based on the strong metal-carbon bond and the high donor capability of the NHC. The most extensive investigations have been carried out in the field of homogeneous catalysis. Here, NHCs have to be considered as typical directing or innocent spectator ligands, best comparable to trialkylphosphines. The recent successful applications of NHCs in ruthenium-catalyzed olefin metathesis... [Pg.58]

Niobia-supported MTO has been prepared either by the deposition of sublimed MTO onto the support, or by the impregnation of the support by a solution of MTO, and has been well characterised [54]. A large variety of oxidation reactions were efficiently performed with niobia-supported MTO, such as olefin metathesis catalysis [53,54], reactions of ethyl diazoacetate, heteroatom oxidation (amine and phosphine oxidations) and olefin epoxidation with hydrogen peroxide [55] (Scheme 13). [Pg.159]

Keywords Asymmetric synthesis, Chiral catalysis, Mo-based catalysts, Natural product synthesis, Olefin metathesis, Recyclable catalysts, Ru-based catalysts, Supported chiral catalysts... [Pg.207]

Olefin metathesis is a unique reaction and is only possible by transition metal catalysis. In fact only complexes of Mo, W, Re, and Ru are known to catalyze olefin metathesis. Once it was known that metallocarbenes were the actual catalytic species, a variety of metal carbene complexes were prepared and evaluated as catalysts. Two types of catalysts have emerged as the most useful overall. The molybdenum-based catalysts developed by Schrock and ruthenium-based catalysts developed by Grubbs. [Pg.257]

The first catalysis of an olefin metathesis reaction was reported by Banks and Bailey in 1964 (56). They reported that activated molybdenum hexacarbonyl on alumina converted propylene, for example, into ethylene and 2-butene at 150°C and 30 atm. Oxides of rhenium are also powerful heterogeneous catalysts. [Pg.246]

The first homogeneous catalysis of an olefin metathesis reaction... [Pg.246]

Olefin isomerization, with Claisen rearrangement, 1, 365 Olefin metathesis with alkyllead, 9, 415 in aqueous media, 1, 834 ESI—MS studies, 1, 812 in high-throughput catalyst discovery, 1, 365 in ionic liquids, 1, 869 for polymerization characteristics, 1, 149 Grubbs catalysts, 1, 151 Schrock catalysis, 1, 150... [Pg.159]


See other pages where Catalysis olefin metathesis is mentioned: [Pg.477]    [Pg.219]    [Pg.75]    [Pg.81]    [Pg.1336]    [Pg.526]    [Pg.1]    [Pg.37]    [Pg.162]    [Pg.137]    [Pg.468]    [Pg.485]    [Pg.35]    [Pg.17]    [Pg.75]    [Pg.560]    [Pg.176]    [Pg.166]    [Pg.700]    [Pg.232]    [Pg.103]    [Pg.154]    [Pg.160]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Catalysis of olefin metathesis

Catalysis olefins

Homogeneous catalysis alkene (olefin) and alkyne metathesis

Homogeneous catalysis alkene (olefin) metathesis

Metathesis catalysis

Olefin metathesis

Olefin metathesis molybdenum catalysis

Olefin metathesis ruthenium catalysis

Olefine metathesis

© 2024 chempedia.info