Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis of nucleophilic displacement

Polymer supports different from polystyrene show different response to % RS in triphase catalysis of nucleophilic displacements. Poly(4-vinylpyridines) 66-71 % alkylated with C8, C12, and C16 chains (6) give high yields of cyanide displacement on 1-bromooctane and on 1-iodooctane and of bromide/iodide exchange of the 1-halooctanes81,87). An 81.6% RS n-butyl-quaternized poly(4-vinylpyridine) (6)... [Pg.70]

The goal of much activity in synthesis of host-guest complexes is to mimic the selectivity and catalytic activity of enzymes. In Chapter 31, Schneider et al. examine the use of intramolecular inclusion complexes for catalysis of nucleophilic displacement reactions. The main emphasis here is on macrocyclic ammonium ions as hosts. [Pg.27]

The affinity of the polymer-bound catalyst for water and for organic solvent also depends upon the structure of the polymer backbone. Polystyrene is nonpolar and attracts good organic solvents, but without ionic, polyether, or other polar sites, it is completely inactive for catalysis of nucleophilic reactions. The polar sites are necessary to attract reactive anions. If the polymer is hydrophilic, as a dextran, its surface must be made less polar by functionalization with lipophilic groups to permit catalytic activity for most nucleophilic displacement reactions. The % RS and the chemical nature of the polymer backbone affect the hydrophilic/lipophilic balance. The polymer must be able to attract both the reactive anion and the organic substrate into its matrix to catalyze reactions between the two mutually insoluble species. Most polymer-supported phase transfer catalysts are used under conditions where both intrinsic reactivity and intraparticle diffusion affect the observed rates of reaction. The structural variables in the catalyst which control the hydrophilic/lipophilic balance affect both activity and diffusion, and it is often not possible to distinguish clearly between these rate limiting phenomena by variation of active site structure, polymer backbone structure, or % RS. [Pg.57]

The catalysis of hydrolysis of carboxylic acid derivatives by weak bases has not been carefully studied until relatively recently. Koshland reported in 1952 the catalysis of acetyl phosphate hydrolysis by pyridine Bafna and Gold (1953) reported the pyridine-catalyzed hydrolysis of acetic anhydride. A short time later the catalysis of aromatic ester hydrolysis by imidazole was demonstrated (Bender and Turnquest, 1957 a, b Bruice and Schmir, 1957). Since that time a large amount of work has been devoted to the understanding of catalyzed ester reactions. Much of the work in this area has been carried out with the purpose of inquiry into the mode of action of hydrolytic enzymes. These enzymes contain on their backbone weak potential catalytic bases or acids, such as imidazole in the form of histidine, carboxylate in the form of aspartate and glutamate, etc. As a result of the enormous effort put into the study of nucleophilic displacements at the carbonyl carbon, a fair understanding of these reactions has resulted. An excellent review is available for work up to 1960 (Bender, 1960). In addition, this subject has been... [Pg.237]

The term phase transfer catalysis was coined by Starks to describe the mechanism of catalysis of reactions between water-soluble inorganic salts and water-insoluble organic substrates by lipophilic quaternary ammonium and phosphonium ions Ql). His investigations of nucleophilic displacement reactions, such as that of aqueous sodium cyanide with 1-chlorooctane, and the investigations of Makosza on reactions of aqueous sodium hydroxide with chloroform to generate dichlorocarbene, and with active ketones and nitriles to generate carbanions, pioneered the field in the mid-1960 s. It was nearly fifteen years before many such processes were adopted in industry. Starks now estimates there are about sixty phase transfer catalytic processes in use worldwide, mostly in pharmaceutical and fine chemical manufacturing (32V... [Pg.11]

The factors in carboaromatic nucleophilic displacements summarized in this section are likely to be characteristic of heteroaromatic reactions and can be used to rationalize the behavior of azine derivatives. The effect of hydrogen bonding and of complexing with metal compounds in providing various degrees of electrophilic catalysis (cf. Section II, C) would be expected to be more extensive in heteroaromatics. [Pg.159]

The catalytic effect of protons has been noted on many occasions (cf. Section II,D,2,c) and autocatalysis frequently occurs when the nucleophile is not a strong base. Acid catalysis of reactions with water, alcohols, mercaptans, amines, or halide ions has been observed for halogeno derivatives of pyridine, pyrimidine (92), s-triazine (93), quinoline, and phthalazine as well as for many other ring systems and leaving groups. An interesting displacement is that of a 4-oxo group in the reaction of quinolines with thiophenols, which is made possible by the acid catalysis. [Pg.194]

Interests in the phase transfer catalysis (PTC) have grown steadily for the past several years [68-70]. The use of PTC has recently received industrial importance in cases where the alternative use of polar aprotic solvents would be prohibitively expensive [71-74]. Thus, the potential application of the phase transfer catalyzed aromatic nucleophilic displacement reactions between phenoxide or thiophenoxide and activated systems has... [Pg.42]

Direct nucleophilic displacement of halide and sulfonate groups from aromatic rings is difficult, although the reaction can be useful in specific cases. These reactions can occur by either addition-elimination (Section 11.2.2) or elimination-addition (Section 11.2.3). Recently, there has been rapid development of metal ion catalysis, and old methods involving copper salts have been greatly improved. Palladium catalysts for nucleophilic substitutions have been developed and have led to better procedures. These reactions are discussed in Section 11.3. [Pg.1004]

Nuclear motion, the principle of least, and the theory of stereoelectronic control, 24, 113 Nucleophiles, partitioning of carbocations between addition and deprotonation. 35, 67 Nucleophilic aromatic photosubstitution, 11,225 Nucleophilic catalysis of ester hydrolysis and related reactions, 5,237 Nucleophilic displacement reactions, gas-phase, 21, 197... [Pg.339]

The reaction of phosphines and alkyl halides presents an alternative way to generate phosphonium electrophiles (Scheme 3.8). In particular, the combination of a phosphine and carbon tetrabromide (the Appel reaction) allows for in situ formation of a phosphonium dibromide salt (48, X = Br). Treatment of a hemiacetal donor 1 with the phosphonium halide 48 initially provides the oxophosphonium intermediate 38 (X = Br). However, the oxophosphonium intermediate 38 can react with bromide ion to form the anomeric bromide intermediate 49 (X = Br) with concomitant generation of phosphine oxide. With the aid of bromide ion catalysis (i.e. reversible, catalytic formation of the more reactive P-anomeric bromide 50) [98], the nucleophile displaces the anomeric bromide to form the desired glycoside product 3. The hydrobromic add by-product is typically buffered by the presence of tetramethyl urea (TMU). [Pg.125]

In contrast, liquidiliquid phase-transfer catalysis is virtually ineffective for the conversion of a-bromoacetamides into aziridones (a-lactams). Maximum yields of only 17-23% have been reported [31, 32], using tetra-n-butylammonium hydrogen sulphate or benzyltriethylammonium bromide over a reaction time of 4-6 days. It is significant that a solidiliquid two-phase system, using solid potassium hydroxide in the presence of 18-crown-6 produces the aziridones in 50-94% yield [33], but there are no reports of the corresponding quaternary ammonium ion catalysed reaction. Under the liquidiliquid two-phase conditions, the major product of the reaction is the piperazine-2,5-dione, resulting from dimerization of the bromoacetamide [34, 38]. However, only moderate yields are isolated and a polymer-supported catalyst appears to provide the best results [34, 38], Significant side reactions result from nucleophilic displacement by the aqueous base to produce hydroxyamides and ethers. [Pg.183]

The simplest C-C bond formation reaction is the nucleophilic displacement of a halide ion from a haloalkane by the cyanide ion. This was one of the first reactions for which the kinetics under phase-transfer catalysed conditions was investigated and patented [l-3] and is widely used [e.g. 4-12], The reaction has been the subject of a large number of patents and it is frequently used as a standard reaction for the assessment of the effectiveness of the catalyst. Although the majority of reactions are conducted under liquiddiquid two-phase conditions, it has also been conducted under solidrliquid two-phase conditions [13] but, as with many other reactions carried out under such conditions, a trace of water is necessary for optimum success. Triphase catalysis [14] and use of the preformed quaternary ammonium cyanide [e.g. 15] have also been applied to the conversion of haloalkanes into the corresponding nitriles. Polymer-bound chloroalkanes react with sodium cyanide and cyanoalkanes under phase-transfer catalytic conditions [16],... [Pg.229]

The structure and mechanism of catalysis of FTase were well defined in the late 1990s from several X-ray crystallography and elegant biochemical studies [24,26-30]. The enzyme is a heterodimer of a and P subunits [31,32]. The P subunit contains binding sites for both the farnesyl pyrophosphate and the CAAX protein substrates. A catalytic zinc (Zn " ) identified in the active site of the P subunit participates in the binding and activation of the CAAX protein substrates [28]. The Zn " is coordinated to the enzyme in a distorted tetrahedral geometry and surrounded by hydrophobic pockets [24,27]. Upon binding of the CAAX peptide, the thiol of the cysteine displaces water and is activated for a nucleophilic attack via thiolate on the C-1 carbon atom of farnesyl pyrophosphate [30]. [Pg.137]


See other pages where Catalysis of nucleophilic displacement is mentioned: [Pg.448]    [Pg.110]    [Pg.150]    [Pg.448]    [Pg.110]    [Pg.150]    [Pg.242]    [Pg.277]    [Pg.277]    [Pg.238]    [Pg.242]    [Pg.189]    [Pg.193]    [Pg.90]    [Pg.170]    [Pg.271]    [Pg.157]    [Pg.203]    [Pg.185]    [Pg.100]    [Pg.334]    [Pg.120]    [Pg.28]    [Pg.140]    [Pg.200]    [Pg.196]    [Pg.345]    [Pg.95]    [Pg.468]    [Pg.68]    [Pg.590]    [Pg.100]    [Pg.170]    [Pg.271]    [Pg.13]   


SEARCH



Nucleophile catalysis

Nucleophiles catalysis, nucleophilic

Nucleophilic catalysis

Nucleophilic displacement

© 2024 chempedia.info