Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteroaromatics reactions

The factors in carboaromatic nucleophilic displacements summarized in this section are likely to be characteristic of heteroaromatic reactions and can be used to rationalize the behavior of azine derivatives. The effect of hydrogen bonding and of complexing with metal compounds in providing various degrees of electrophilic catalysis (cf. Section II, C) would be expected to be more extensive in heteroaromatics. [Pg.159]

N-Oxides of heteroaromatics, reactions with ketenes 79H(12)819. Photochemical electron transfer in reactions of N-heterocycles 82YZ716. Photochemical transformations of heterocyclic enamides 78S489. Photochemistry of N-heterocycles 82AHC(30)239. [Pg.288]

Reactions of aromatic and heteroaromatic rings are usually only found with highly reactive compounds containing strongly electron donating substituents or hetero atoms (e.g. phenols, anilines, pyrroles, indoles). Such molecules can be substituted by weak electrophiles, and the reagent of choice in nature as well as in the laboratory is usually a Mannich reagent or... [Pg.291]

In addition to benzene and naphthalene derivatives, heteroaromatic compounds such as ferrocene[232, furan, thiophene, selenophene[233,234], and cyclobutadiene iron carbonyl complexpSS] react with alkenes to give vinyl heterocydes. The ease of the reaction of styrene with sub.stituted benzenes to give stilbene derivatives 260 increases in the order benzene < naphthalene < ferrocene < furan. The effect of substituents in this reaction is similar to that in the electrophilic aromatic substitution reactions[236]. [Pg.56]

In the reaction of Q,/3-unsaturated ketones and esters, sometimes simple Michael-type addition (insertion and hydrogenolysis, or hydroarylation, and hydroalkenylation) of alkenes is observed[53,54]. For example, a simple addition product 56 to methyl vinyl ketone was obtained by the reaction of the heteroaromatic iodide 55[S5]. The corresponding bromide affords the usual insertion-elimination product. Saturated ketones are obtained cleanly by hydroarylation of o,/3l-unsaturated ketones with aryl halides in the presence of sodium formate, which hydrogenolyses the R—Pd—I intermediate to R— Pd—H[56]. Intramolecular hydroarylation is a useful reaction. The diiodide 57 reacts smoothly with sodium formate to give a model compound for the afla-toxin 58. (see Section 1.1.6)[57]. Use of triethylammonium formate and BU4NCI gives better results. [Pg.136]

Tautomerism of the A-2-thiazoline-5-thiones has not been investigated intensively. A recent report shows that 2-phenylthiazo e-5-thiols exist in the thiol form in both polar and nonpolar solvents (563). This behavior is in contrast with that of corresponding thiazolones. Addition reactions involve only the exocyclic sulfur atom, and thiazole-5-thiols behave as typical heteroaromatic thiols towards unsaturated systems, giving sulfides (1533) (Scheme 80) (563),... [Pg.417]

In agreement with the theory of polarized radicals, the presence of substituents on heteroaromatic free radicals can slightly affect their polarity. Both 4- and 5-substituted thiazol-2-yl radicals have been generated in aromatic solvents by thermal decomposition of the diazoamino derivative resulting from the reaction of isoamyl nitrite on the corresponding 2-aminothiazole (250,416-418). Introduction in 5-position of electron-withdrawing substituents slightly enhances the electrophilic character of thiazol-2-yl radicals (Table 1-57). [Pg.113]

The thiazolyl radicals are, in comparison to the phenyl radical, electrophilic as shown by isomer ratios obtained in reaction with different aromatic and heteroaromatic compounds. Sources of thiazolyl radicals are few the corresponding peroxide and 2-thiazolylhydrazine (202, 209, 210) (see Table III-34) are convenient reagents, and it is the reaction of an alky] nitrite (jsoamyl) on the corresponding (2-, 4-, or 5-) amine that is most commonly used to produce thiazolyl radicals (203-206). The yields of substituted thiazole are around 40%. These results are summarized in Tables III-35 and IIT36. [Pg.370]

A/-sulfonated ayiridines have also been used in Friedel-Crafts reactions (qv) (63). The successful C-alkylation of the heteroaromatic compounds indole (qv) [120-72-9] (64—66) and thiophene [110-02-1] (67) with a2itidines has also been reported ... [Pg.3]

Basic Red 22 (134), which contains 1 part ia 7 of the yellowish red 1,4-dimethyl isomer, Basic Red 29 (135), and Basic Yellow 25 (136) are all examples of delocalized cationic azo dyes. Dyes of this type can also be synthesized by Hbnig s oxidative coupling reaction of heteroaromatic hydrazones with tertiary aromatic amines. [Pg.454]

Photopolymerization reactions are widely used for printing and photoresist appHcations (55). Spectral sensitization of cationic polymerization has utilized electron transfer from heteroaromatics, ketones, or dyes to initiators like iodonium or sulfonium salts (60). However, sensitized free-radical polymerization has been the main technology of choice (55). Spectral sensitizers over the wavelength region 300—700 nm are effective. AcryUc monomer polymerization, for example, is sensitized by xanthene, thiazine, acridine, cyanine, and merocyanine dyes. The required free-radical formation via these dyes may be achieved by hydrogen atom-transfer, electron-transfer, or exciplex formation with other initiator components of the photopolymer system. [Pg.436]

Poly(arylene vinylenes). The use of the soluble precursor route has been successful in the case of poly(arylene vinylenes), both those containing ben2enoid and heteroaromatic species as the aryl groups. The simplest member of this family is poly(p-phenylene vinylene) [26009-24-5] (PPV). High molecular weight PPV is prepared via a soluble precursor route (99—105). The method involves the synthesis of the bis-sulfonium salt from /)-dichloromethylbenzene, followed by a sodium hydroxide elimination polymerization reaction at 0°C to produce an aqueous solution of a polyelectrolyte precursor polymer (11). This polyelectrolyte is then processed into films, foams, and fibers, and converted to PPV thermally (eq. 8). [Pg.38]

A useful approach to the substitution of ring C—H positions lies in the activation of the heteroaromatic system by an A-oxide group, initiating a formal intramolecular redox reaction. 1-Methyllumazine 5-oxide reacts with acetic anhydride in a Katada rearrangement... [Pg.289]

Another approach uses the reaction of 6-chloro-5-nitropyrimidines with a-phenyl-substituted amidines followed by base-catalyzed cyclization to pteridine 5-oxides, which can be reduced further by sodium dithionite to the heteroaromatic analogues (equation 97) (79JOC1700). Acylation of 6-amino-5-nitropyrimidines with cyanoacetyl chloride yields 6-(2-cyanoacetamino)-5-nitropyrimidines (276), which can be cyclized by base to 5-hydroxypteridine-6,7-diones (27S) or 6-cyano-7-oxo-7,8-dihydropteridine 5-oxides (277), precursors of pteridine-6,7-diones (278 equation 98) (75CC819). [Pg.316]

The classical structures of pyrrole, furan and thiophene (31) suggest that these compounds might show chemical reactions similar to those of amines, ethers and thioethers (32) respectively. On this basis, the initial attack of the electrophile would be expected to take place at the heteroatom and lead to products such as quaternary ammonium and oxonium salts, sulfoxides and sulfones. Products of this type from the heteroaromatic compounds under consideration are relatively rare. [Pg.42]

The reactivity sequence furan > tellurophene > selenophene > thiophene is thus the same for all three reactions and is in the reverse order of the aromaticities of the ring systems assessed by a number of different criteria. The relative rate for the trifluoroacetylation of pyrrole is 5.3 x lo . It is interesting to note that AT-methylpyrrole is approximately twice as reactive to trifluoroacetylation as pyrrole itself. The enhanced reactivity of pyrrole compared with the other monocyclic systems is also demonstrated by the relative rates of bromination of the 2-methoxycarbonyl derivatives, which gave the reactivity sequence pyrrole>furan > selenophene > thiophene, and by the rate data on the reaction of the iron tricarbonyl-complexed carbocation [C6H7Fe(CO)3] (35) with a further selection of heteroaromatic substrates (Scheme 5). The comparative rates of reaction from this substitution were 2-methylindole == AT-methylindole>indole > pyrrole > furan > thiophene (73CC540). [Pg.43]

In many cases, substituents linked to a pyrrole, furan or thiophene ring show similar reactivity to those linked to a benzenoid nucleus. This generalization is not true for amino or hydroxyl groups. Hydroxy compounds exist largely, or entirely, in an alternative nonaromatic tautomeric form. Derivatives of this type show little resemblance in their reactions to anilines or phenols. Thienyl- and especially pyrryl- and furyl-methyl halides show enhanced reactivity compared with benzyl halides because the halogen is made more labile by electron release of the type shown below. Hydroxymethyl and aminomethyl groups on heteroaromatic nuclei are activated to nucleophilic attack by a similar effect. [Pg.69]

A quantitative study has been made on the effect of a methyl group in the 2-position of five-membered heteroaromatic compounds on the reactivity of position 5 in the formylation and trifluoroacetylation reaction. The order of sensitivity to the activating effect of the substituent is furan > tellurophene >selenophene = thiophene (77AHC(2l)ll9). [Pg.69]

A novel method for preparing amino heterocycles is illustrated by the preparation of 2-amino-5-methylthiophene (159). In this approach vinyl azides act as NH2 equivalents in reaction with aromatic or heteroaromatic lithium derivatives (82TL699). A further variant for the preparation of amino heterocycles is by azide reduction the latter compounds are obtained by reaction of lithio derivatives with p- toluenesulfonyl azide and decomposition of the resulting lithium salt with tetrasodium pyrophosphate (Scheme 66) (82JOC3177). [Pg.73]

Theoretical reactivity indices of heteroaromatic systems distinguish reactivity toward electrophilic, nucleophilic and homolytic reactions. [Pg.5]

In this initial section the reactivities of the major types of azole aromatic rings are briefly considered in comparison with those which would be expected on the basis of electronic theory, and the reactions of these heteroaromatic systems are compared among themselves and with similar reactions of aliphatic and benzenoid compounds. Later in this chapter all the reactions are reconsidered in more detail. It is postulated that the reactions of azoles can only be rationalized and understood with reference to the complex tautomeric and acid-base equilibria shown by these systems. Tautomeric equilibria are discussed in Chapter 4.01. Acid-base equilibria are considered in Section 4.02.1.3 of the present chapter. [Pg.41]

If the reactions of the same substituents on heteroaromatic azoles and on benzene rings are compared, the differences in the reactivities are a measure of the heteroatoms influence. Such influence by the mesomeric effect is smaller when the substituent is /3 to a heteroatom than when it is a or y. The influence by the inductive effect is largest when the substituent is a to a heteroatom. [Pg.81]

Dipoles can also be built into heterocyclic systems, and though of limited use, they may also be utilized for the synthesis of [5,6] ring-fused systems. Reaction of 2 3H)-benzothiazolethione with (chlorocarbonyl)phenylketene in warm anhydrous benzene gave the heteroaromatic betaine (416). On heating with DMAD in boiling toluene the tricyclic pyridinone (418) was obtained, presumably by elimination of COS from the intermediate cycloadduct (417) (80JOC2474). [Pg.151]

Hetero[13]annulene, bis-dehydro-dimethylated structure, 7, 716 H etero[ 17]annulenes H NMR, 7, 719, 721 restricted structure, 7, 720 Heteroaromatic compounds reactions... [Pg.644]

A special application of heteroaromatic acylation via a modified Dakin-West reaction leads to a-fluoro ketone derivatives [50] (equation 30) Such fluoro ketones have been successfully used as enzyme inhibitors in modern bioorganic chemistry [5, 6]... [Pg.535]

A variety of aryl systems have been explored as substrates in the Knorr quinoline synthesis. Most notable examples are included in the work of Knorr himself who has demonstrated the high compatibility of substituted anilines as nucleophilic participants in that reaction. In the case of heteroaromatic substrates however, the ease of cyclization is dependent on the nature and relative position of the substituents on the aromatic ring." For example, 3-aminopyridines do not participate in ring closure after forming the anilide... [Pg.439]

The classical Vilsmeier-Haack reaction is one of the most useful general synthetic methods employed for the formylation of various electron rich aromatic, aliphatic and heteroaromatic substrates. However, the scope of the reaction is not restricted to aromatic formylation and the use of the Vilsmeier-Haack reagent provides a facile entry into a large number of heterocyclic systems. In 1978, the group of Meth-Cohn demonstrated a practically simple procedure in which acetanilide 3 (R = H) was efficiently converted into 2-chloro-3-quinolinecarboxaldehyde 4 (R = H) in 68% yield. This type of quinoline synthesis was termed the Vilsmeier Approach by Meth-Cohn. ... [Pg.443]


See other pages where Heteroaromatics reactions is mentioned: [Pg.104]    [Pg.280]    [Pg.104]    [Pg.280]    [Pg.148]    [Pg.213]    [Pg.218]    [Pg.251]    [Pg.567]    [Pg.85]    [Pg.286]    [Pg.308]    [Pg.315]    [Pg.318]    [Pg.40]    [Pg.39]    [Pg.41]    [Pg.515]    [Pg.2]    [Pg.542]    [Pg.188]    [Pg.200]   
See also in sourсe #XX -- [ Pg.478 , Pg.479 , Pg.480 ]




SEARCH



Carbenes heteroaromatic compound reactions

Electron-transfer Reactions of Heteroaromatic Compounds

Heteroaromatic Substitution Reactions

Heteroaromatic Tosylates in the Regioselective Heck Reaction

Heteroaromatic compounds coupling reactions

Heteroaromatic compounds reactions with carbenes

Heteroaromatic compounds, Suzuki coupling reactions

Heteroaromaticity

Heteroaromatics

Heteroaromatics Heck reaction

Intramolecular reactions of 2-indolylacyl radicals with aromatic and heteroaromatic systems

REACTIONS AT HETEROAROMATIC RINGS

Reaction mechanisms aromatic/heteroaromatic compounds

Reactions of Aromatics and Heteroaromatics

Reactions with heteroaromatic compounds

Suzuki reaction heteroaromatic compounds

Synthesis of Heteroaromatics via Rearrangement Reactions

© 2024 chempedia.info