Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis desorption

The identification of particles adsorbed on solid surfaces and recognition of their properties is one of the fundamental problems in research on adsorption and heterogeneous catalysis. Desorption of the adsorbed species from a surface and its subsequent analysis is an important method for solv-... [Pg.343]

The physical chemist is very interested in kinetics—in the mechanisms of chemical reactions, the rates of adsorption, dissolution or evaporation, and generally, in time as a variable. As may be imagined, there is a wide spectrum of rate phenomena and in the sophistication achieved in dealing wifli them. In some cases changes in area or in amounts of phases are involved, as in rates of evaporation, condensation, dissolution, precipitation, flocculation, and adsorption and desorption. In other cases surface composition is changing as with reaction in monolayers. The field of catalysis is focused largely on the study of surface reaction mechanisms. Thus, throughout this book, the kinetic aspects of interfacial phenomena are discussed in concert with the associated thermodynamic properties. [Pg.2]

With correct experimental procedure TDS is straightforward to use and has been applied extensively in basic experiments concerned with the nature of reactions between pure gases and clean solid surfaces. Most of these applications have been catalysis-related (i. e. performed on surfaces acting as models for catalysts) and TDS has always been used with other techniques, e.g. UPS, ELS, AES, and LEED. To a certain extent it is quantifiable, in that the area under a desorption peak is proportional to the number of ions of that species desorbed in that temperature range, but measurement of the area is not always easy if several processes overlap. [Pg.178]

A catalytic reaction is composed of several reaction steps. Molecules have to adsorb to the catalyst and become activated, and product molecules have to desorb. The catalytic reaction is a reaction cycle of elementary reaction steps. The catalytic center is regenerated after reaction. This is the basis of the key molecular principle of catalysis the Sabatier principle. According to this principle, the rate of a catalytic reaction has a maximum when the rate of activation and the rate of product desorption balance. [Pg.2]

Another major computational effort is in the area of metals and their chemistry, which comprises the subject of this manuscript. The studies are directed towards both catalysis and the development of improved materials, such as stronger matrix composites. The materials and gas phase work have some overlap. For example, surface recombination affects the heating on the AOTV heat shield and on the walls of the scramjet. In addition, desorption of these molecules from the walls of the scramjet could impact the chemistry in the flow. [Pg.17]

EfiBdent hydrogen supply iiom decalin was only accomplished by the si terheated liquid-film-type catalysis under reactive distillation conditions at modaate heating tempaatures of 210-240°C. Caibcm-supported nano-size platinum-based catalysts in the si ietheated liquid-film states accelerated product desorption fixjm file catalyst surface due to its temperature gradient under boiling conditions, so that both hi reaction rates and conversions were obtained simultaneously. [Pg.177]

In particular, reactions in heterogeneous catalysis are always a series of steps, including adsorption on the surface, reaction, and desorption back into the gas phase. In the course of this chapter we will see how the rate equations of overall reactions can be constructed from those of the elementary steps. [Pg.26]

Characterization is an important field in catalysis. Spectroscopy, microscopy, diffraction and methods based on adsorption and desorption or bulk reactions (reduction, oxidation) all offer tools to investigate the nature of an active catalyst. With such knowledge we hope to understand catalysts better, so that we can improve them or even design new catalysts. [Pg.129]

Unraveling catalytic mechanisms in terms of elementary reactions and determining the kinetic parameters of such steps is at the heart of understanding catalytic reactions at the molecular level. As explained in Chapters 1 and 2, catalysis is a cyclic event that consists of elementary reaction steps. Hence, to determine the kinetics of a catalytic reaction mechanism, we need the kinetic parameters of these individual reaction steps. Unfortunately, these are rarely available. Here we discuss how sticking coefficients, activation energies and pre-exponential factors can be determined for elementary steps as adsorption, desorption, dissociation and recombination. [Pg.267]

Finally, although both temperature-programmed desorption and reaction are indispensable techniques in catalysis and surface chemistry, they do have limitations. First, TPD experiments are not performed at equilibrium, since the temperature increases constantly. Secondly, the kinetic parameters change during TPD, due to changes in both temperature and coverage. Thirdly, temperature-dependent surface processes such as diffusion or surface reconstruction may accompany desorption and exert an influence. Hence, the technique should be used judiciously and the derived kinetic data should be treated with care ... [Pg.279]

Elementary steps in which a bond is broken form a particularly important class of reactions in catalysis. The essence of catalytic action is often that the catalyst activates a strong bond that cannot be broken in a direct reaction, but which is effectively weakened in the interaction with the surface, as we explained in Chapter 6. To monitor a dissociation reaction we need special techniques. Temperature-programmed desorption is an excellent tool for monitoring reactions in which products desorb. However, when the reaction products remain on the surface, one needs to employ different methods such as infrared spectroscopy or secondary-ion mass spectrometry (SIMS). [Pg.282]

The SCR catalyst is considerably more complex than, for example, the metal catalysts we discussed earlier. Also, it is very difficult to perform surface science studies on these oxide surfaces. The nature of the active sites in the SCR catalyst has been probed by temperature-programmed desorption of NO and NH3 and by in situ infrared studies. This has led to a set of kinetic parameters (Tab. 10.7) that can describe NO conversion and NH3 slip (Fig. 10.16). The model gives a good fit to the experimental data over a wide range, is based on the physical reality of the SCR catalyst and its interactions with the reacting gases and is, therefore, preferable to a simple power rate law in which catalysis happens in a black box . Nevertheless, several questions remain unanswered, such as what are the elementary steps and what do the active site looks like on the atomic scale ... [Pg.399]

In catalysis active sites are operative that allow for an alternative reaction path. For a satisfactory catalyst this alternative pathway leads to higher rates and higher selectivity. In heterogeneous catalysis reactant molecules adsorb at active sites on the catalyst surface at the surface sites reactions occur and products are desorbed subsequently. After desorption, active sites are again available for reactant molecules and the cycle is closed. In homogeneous catalysis the situation is essentially identical. Here complexation and decomplexation occur. A complication in heterogeneous catalysis is the need for mass transfer into and out of the catalyst particle, which is usually porous with the major part of the active sites at the interior surface. [Pg.61]

Principal differences between catalysis by dissolved electrolytes and by resins are that with resins as catalysts catalysis overlaps with diffusion, adsorption, and desorption processes, while this is not the case with electrolytes (Naumann, 1959). Also, the matrix of the resin with fixed ionic group may have some influence on the course of reaction. [Pg.127]

There is of course attenuation of the signal, as shown in Fig. 5, taken from Joyner and Roberts (28) The gas phase spectrum will also be obtained, but this usually can be separated easily from the signal of the solid. This sample cell arrangement thus permits the study of the stationary-state surface during catalysis and also its evolution in response to pulses and step functions in the gas composition. The temperature of the sample should be controlled so that the surface can be studied during temperature-programmed desorption and reaction. [Pg.9]

Jain, A.K., Hudgins, R.R. and Silveston, P.L., "Adsorption/ Desorption Models How Useful to Predict Catalyst Behavior under Transient Conditions", paper submitted to Seventh North American Meeting, The Catalysis Society, Boston, 1981. [Pg.276]


See other pages where Catalysis desorption is mentioned: [Pg.739]    [Pg.1851]    [Pg.84]    [Pg.2]    [Pg.228]    [Pg.436]    [Pg.274]    [Pg.386]    [Pg.65]    [Pg.219]    [Pg.149]    [Pg.65]    [Pg.65]    [Pg.228]    [Pg.246]    [Pg.445]    [Pg.511]    [Pg.338]    [Pg.5]    [Pg.20]    [Pg.76]    [Pg.16]    [Pg.59]    [Pg.150]    [Pg.207]    [Pg.188]    [Pg.451]    [Pg.469]    [Pg.181]    [Pg.34]    [Pg.8]   
See also in sourсe #XX -- [ Pg.207 ]




SEARCH



Catalysis, heterogeneous temperature-programmed desorption

Heterogeneous catalysis desorption step

© 2024 chempedia.info