Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carrier-mediated transport pathway

Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier. Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier.
The rat intestinal cell line IEC-18 has been evaluated as a model to study small intestinal epithelial permeability. This cell line forms very leaky monolayers with TER of 50 n cm2 and permeability to mannitol of 8 x 10-6 cm s 1. The IEC-18 model was proposed to be a better model than the Caco-2 monolayers for evaluating the small intestinal paracellular permeation of hydrophilic molecules. However, the leakier paracellular pathway is related to the poor differentiation level of the cells and an undeveloped paracellular barrier lacking peri-junctional actin-belt. In addition, due to the poor differentiation the cells have minute expression of transporters and are therefore not useful for studies of carrier-mediated transport [82, 84]... [Pg.99]

Molecules with a large molecular weight or size are confined to the transcellular route and its requirements related to the hydrophobicity of the molecule. The transcellular pathway has been evaluated for many years and is thought to be the main route of absorption of many drugs, both with respect to carrier-mediated transport and passive diffusion. The most well-known requirement for the passive part of this route is hydrophobicity, and a relationship between permeability coefficients across cell monolayers such as the Caco-2 versus log P and log D 7.4 or 6.5 have been established [102, 117]. However, this relationship appears to be nonlinear and reaches a plateau at around log P of 2, while higher lipophilicities result in reduced permeability [102, 117, 118]. Because of this, much more attention has recently been paid towards molecular descriptors other than lipophilicity [86, 119-125] (see section 5.5.6.). The relative contribution between the para-cellular and transcellular components has also been evaluated using Caco-2 cells, and for a variety of compounds with different charges [110, 112] and sizes [112] (see Section 5.4.5). [Pg.113]

Solvents used to increase solubility for compounds during screening of permeability across the cell monolayers, together with commonly used excipients for formulations, can also affect the barrier as they contain ingredients which enhance drug absorption [100, 151]. There are different mechanisms by which these compounds can modulate the barrier [4, 149, 150] for example, they may increase the tight junctional pathway inhibiting carrier-mediated transport, or cholesterol... [Pg.117]

Keywords Colon Controlled release Sustained release Rat Single-pass perfusion Recirculation Closed loop Carrier-mediated transport Passive transport Membrane permeability P-glycoprotein Paracellular pathway Transcellular pathway... [Pg.77]

Figure 8.2 Possible drug transport pathways across the intestinal mucosa, illustrating transcellular (1) and paracellular (2) modes of passive transport, transcytosis (3), carrier-mediated transport (4), and efflux transport (5). A combination of these routes often defines the overall transepithelial transport rate of nutrients and drugs. Figure 8.2 Possible drug transport pathways across the intestinal mucosa, illustrating transcellular (1) and paracellular (2) modes of passive transport, transcytosis (3), carrier-mediated transport (4), and efflux transport (5). A combination of these routes often defines the overall transepithelial transport rate of nutrients and drugs.
Transport across the cell membrane may occur via different routes. Some of these transport processes are energy dependent and therefore termed active others are independent from energy, thus passive. Passive transport phenomena, for example, transcellular transport, are triggered by external driving forces, such as concentration differences, and do not require metabolic activity. However, generally, they are restricted to small lipophilic compounds. In contrast, active transport phenomena, such as active carrier-mediated transport or vesicular pathways, take course independent from external driving... [Pg.650]

The major pathway of drug transport across buccal mucosa seems to follow simple Fickian diffusion [17]. Passive diffusion occurs in accordance with the pH-partition theory. Considerable evidence also exists in the literature regarding the presence of carrier-mediated transport in the buccal mucosa [18,19]. Examination of Eq. (1) for drug flux,... [Pg.197]

Prognosis of a compounds permeability should be made stressing limitations of the model. There is no bioavailability prognosis from in vitro data - a cellular assay can provide only permeability potential through a biological membrane. The membrane, in most cases CACO-2 cells, is very similar to what we observe in vivo in the small intestine and resembles many characteristics to in vivo enterocytes. CACO-2 cells can be used for prediction of different pathways across intestinal cells. Best correlation occurs for passive transcellular route of diffusion. Passive paracellular pathway is less permeable in CACO-2 and correlations are rather qualitative than quantitative for that pathway. CACO-2 cells are an accepted model for identification of compounds with permeability problems, for ranking of compounds and selection of best compounds within a series. Carrier-mediated transport can be studied as well using careful characterization of transporters in the cell batch or clone as a prerequisite for transporter studies. [Pg.447]

The studies reported here using the isolated, vascularly perfused rat intestine system and isolated brush border membrane vesicles fail to support a role for a specific zinc-binding ligand involved in zinc uptake in the rat. Rather, the extent of zinc uptake involves the interaction of several phenomena, including both extracellular and intracellular reactions. It appears that the major pathway of zinc uptake under normal dietary conditions involves the transfer of zinc from various dietary components to a carrier mediated transport system at the brush border membrane. The net absorption of zinc from the lumen could involve a competition between various dietary components, zinc binding ligands and the membrane carrier for zinc. Thus, in some cases, those compounds in the lumen with a higher affinity for zinc than the membrane component will be less likely to permit transfer of zinc to the carrier, while compounds with a lower affinity for zinc will increase the amount of zinc made... [Pg.242]

Another form of facilitated diffusion involves membrane proteins called carriers (sometimes referred to as passive transporters). In carrier-mediated transport, a specific solute binds to the carrier on one side of a membrane and causes a conformational change in the carrier. The solute is then translocated across the membrane and released. The red blood cell glucose transporter is the best-characterized example of passive transporters. It allows D-glucose to diffuse across the red blood cell membrane for use in glycolysis and the pentose phosphate pathway. Facilitated diffusion increases the rate at which certain solutes move down their concentration gradients. This process cannot cause a net increase in solute concentration on one side of the membrane. [Pg.366]

Figure 9.2 Possible pathways for intestinal absorption of a compound (a) transcellular passive diffusion (b) carrier-mediated transport (c) paracellular absorption (d) entry limited by P-gp, an efflux transporter ... Figure 9.2 Possible pathways for intestinal absorption of a compound (a) transcellular passive diffusion (b) carrier-mediated transport (c) paracellular absorption (d) entry limited by P-gp, an efflux transporter ...
The coupled processes described by Eqs. (8), (14), (17), and (22) can be added in (20) as parallel solute transport pathways across the membrane. The phenomenological coefficients (Ly) describe the membrane permeability by these pathways [potential-dependent, Eq. (8) via membrane lipid partition and diffusion, Eq. (14) carrier-mediated, Eq. (17) and convectively coupled, Eq. (22)]. These pathways define parallel resistances through the intestinal barrier in series with precellular resistances to solute transport. [Pg.191]

Anandamide can be transported inside neural cells (neurons and glia) by a carrier-mediated facilitate diffusion mechanism (Beltramo et al., 1997) and transformed through two main pathways (1) hydrolysis to arachidonic acid and ethanolamine, and (2) oxidation to various oxygenated derivatives. [Pg.43]

When a saturable transporter is involved in the permeation process, the permeability is no longer a constant value but is dependent on the concentration of the substrate. In that case it is necessary to characterize the parameters of the carrier-mediated process, Km, the Michaelis-Menten constant related with the affinity by the substrate and Vmax, the maximal velocity of transport. If a passive diffusion process occurs simultaneously to the active transport pathway then it is necessary to evaluate the contribution of each transport mechanism. An example of how to characterize the parameters in two experimental systems and how to correlate them are described in the next section. [Pg.107]

Fig. 3.1 Schematic presentation of absorption pathways through the intestinal epithelium. A passive transcellular B active, carrier-mediated C passive, paracellular D efflux transporters E transcytosis... Fig. 3.1 Schematic presentation of absorption pathways through the intestinal epithelium. A passive transcellular B active, carrier-mediated C passive, paracellular D efflux transporters E transcytosis...
HDL is antiatherogenic and removes cholesterol from peripheral cells and tissues for eventual transport to hepatocytes and excretion in the bile directly or after conversion into bile acids. The efflux of cholesterol from peripheral cells is mediated by the ATP-binding cassette (ABC) transporter protein (discussed later). The flux of cholesterol transport from extrahepatic tissues (e.g., blood vessel wall) toward liver for excretion is known as the reverse cholesterol transport pathway. In contrast, the forward cholesterol pathway involves the transport of cholesterol from liver to the peripheral cells and tissues via the VLDL IDL LDL pathway. It should be noted, however, that the liver plays a major role in the removal of these lipoproteins. Thus, the system of reverse cholesterol transport consisting of LCAT, CETP, apo D, and their carrier lipoproteins is critical for maintaining cellular cholesterol homeostasis. The role of CETP is exemplified in clinical studies involving patients with polymorphic... [Pg.434]

Dietary riboflavin is present mostly as a phosphate, which is rapidly hydrolyzed before absorption in the duodenum.In humans, the rapid, saturable absorption of riboflavin following an oral dose suggests that it is transported by a carrier-mediated pathway located predominantly in duodenal enterocytes. The process may be sodium-dependent. Bile salts enhance absorption of riboflavin. Fecal riboflavin is derived from the intestinal mucosa and the intestinal flora. This is the predominant excretory route for the vitamin. [Pg.916]


See other pages where Carrier-mediated transport pathway is mentioned: [Pg.60]    [Pg.668]    [Pg.60]    [Pg.668]    [Pg.920]    [Pg.485]    [Pg.185]    [Pg.151]    [Pg.250]    [Pg.131]    [Pg.140]    [Pg.63]    [Pg.1228]    [Pg.259]    [Pg.195]    [Pg.203]    [Pg.342]    [Pg.157]    [Pg.124]    [Pg.11]    [Pg.58]    [Pg.585]    [Pg.31]    [Pg.64]    [Pg.233]    [Pg.224]    [Pg.202]    [Pg.2695]    [Pg.26]    [Pg.109]   
See also in sourсe #XX -- [ Pg.668 ]




SEARCH



Carrier-mediated transport

Carriers carrier transport

Mediated transport

© 2024 chempedia.info