Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic salts, from

Watanabe, K., Iwashima, M., and Iguchi, K. (1996a) New marine prostanoid carboxylate salts from the Okinawan soft coral Clavularia viridis. J. Nat. Prod., 59,980-982. [Pg.1400]

Note. Useful information can often be obtained by adding (i) dilute H,SO or (ii) dilute NaOH solution to an aqueous solution of the substance under investigation. A precipitate with (i) usually indicates an aromatic carboxylic acid from a metallic or from an ammonium salt. A precipitate or oil with (ii) usually indicates an aromatic amine from an amine salt. [Pg.404]

A special application of the Japp-Klingemann/Eischer sequence is in the preparation of tryptamines from piperidone-3-carboxylate salts, a method which was originally developed by Abramovitch and Shapiro[2]. When the piperidone is subjected to Japp-Klingemann coupling under mildly alkaline conditions decarboxylation occurs and a 3-hydrazonopiperidin-2-one is isolated. Fischer cyclization then gives 1-oxotetrahydro-p-carbolines which can be hydrolysed and decarboxylated to afford the desired tryptamine. [Pg.67]

Amides are sometimes prepared directly from carboxylic acids and amines by a two step process The first step is an acid-base reaction m which the acid and the amine combine to form an ammonium carboxylate salt On heating the ammonium carboxy late salt loses water to form an amide... [Pg.860]

A method for the generation of benzyne involves heating the diazonium salt from o aminobenzoic acid (benzenediazonium 2 carboxylate) Using curved arrows show how this sub stance forms benzyne What two inorganic compounds are formed in this reaction" ... [Pg.990]

Methyl group (Section 2 7) The group —CH3 Mevalonic acid (Section 26 10) An intermediate in the biosyn thesis of steroids from acetyl coenzyme A Micelle (Section 19 5) A sphencal aggregate of species such as carboxylate salts of fatty acids that contain a lipophilic end and a hydrophilic end Micelles containing 50-100 car boxylate salts of fatty acids are soaps Michael addition (Sections 18 13 and 21 9) The conjugate ad dition of a carbanion (usually an enolate) to an a 3 unsatu rated carbonyl compound... [Pg.1288]

Saponification (Section 20 11) Hydrolysis of esters in basic solution The products are an alcohol and a carboxylate salt The term means soap making and denves from the process whereby animal fats were converted to soap by heating with wood ashes... [Pg.1293]

Color intensity and permanence are improved by metal carboxylate salts, especially 2inc salts (83), which cataly2e the dye development and stabili2e the dye in its colored form. The substituted novolak resin, along with extender and binder, can be apphed to the receiving sheet as a solution or aqueous dispersion. Aqueous dispersions are probably the most widely used they are manufactured by the resin suppher or the user from the base resin. [Pg.304]

Reactant and product structures. Because the transition state stmcture is normally different from but intermediate to those of the initial and final states, it is evident that the stmctures of the reactants and products should be known. One should, however, be aware of a possible source of misinterpretation. Suppose the products generated in the reaction of kinetic interest undergo conversion, on a time scale fast relative to the experimental manipulations, to thermodynamically more stable substances then the observed products will not be the actual products of the reaction. In this case the products are said to be under thermodynamic control rather than kinetic control. A possible example has been given in the earlier description of the reaction of hydroxide ion with ester, when it seems likely that the products are the carboxylic acid and the alkoxide ion, which, however, are transformed in accordance with the relative acidities of carboxylic acids and alcohols into the isolated products of carboxylate salt and alcohol. [Pg.6]

The anodic oxidation of the carboxylate anion 1 of a carboxylate salt to yield an alkane 3 is known as the Kolbe electrolytic synthesis By decarboxylation alkyl radicals 2 are formed, which subsequently can dimerize to an alkane. The initial step is the transfer of an electron from the carboxylate anion 1 to the anode. The carboxyl radical species 4 thus formed decomposes by loss of carbon dioxide. The resulting alkyl radical 2 dimerizes to give the alkane 3 " ... [Pg.183]

Pseudo-Kolbe electrolysis is the name given to anodic decarboxylations where the electron transfer does not occur from the carboxylate but from a group attached to it [31]. These oxidations are characterized by potentials that are much lower than the critical potential for the Kolbe electrolysis. The salt of p-methoxyphenylacetic acid can be oxidized in methanol to afford the corresponding methyl ether as the sole product. The low oxidation potential of 1.4 V (see) suggests, that the electron is being transferred from the aromatic nucleus (Eq. 39) [31]. [Pg.138]

For the pioneering stoichiometric transfer of a carboxyl unit from 2-alkoxycarbonylimidazo-lium salts to benzyl alcohol in the presence of DABCO see Bakhtiar C, Smith EH (1994) J Chem Soc Perkin Trans 1 239-243... [Pg.295]

Polyamides containing a-aminoacid units are readily obtained by reaction of bisazlactones (2-oxazolin-5-ones) with diamines. When polyamines such as diethylenetriamine (DETA) or triethylenetetramine (TETA) are used as the diamine component, the resultant polyamides readily cyclodehydrate above 200°C to produce polymers containing 2-imidazolin-5-one units in the backbone. Polyamides derived from simple diamines (e.g. 1,6-hexanedi amine) cyclodehydrate only in the presence of a suitable catalyst. Carboxylate salts and certain Lewis acids have been found to be efficient catalysts for this transformation. [Pg.119]

In contrast to 1, the related pure host 7 may be obtained in crystalline form 68). The crystal structure of 7 is built via helical chains of alternating intra- and inter-molecular H-bonding through the carboxyl functions. This structure supplies the information that the carboxyl groups are therefore already positioned in an appropriate way to facilitate analogous H-bonding in the known inclusions of 7. As discussed later (Sect. 4.2.2), these are exclusively salt-type associates and as such, intimately interact with the carboxyl groups. Hence one may infer that displacement of the carboxyl functions from position 2 in 1 to position 8 in 7 reduces the ability of inclusion formation. Similar reasons such as the solid-solubility differences observed in the classical naphthalene/chloronaphthalene systems (alpha- vs. beta-substituted derivatives, cf. Ref. 28 may also be applied here. [Pg.86]

Many acrylic acid copolymers are water-soluble but unlike poly(vinyl alcohol) they are not degraded by alkali. In fact they need alkali for effective desizing as they are more soluble at alkaline pH than in neutral solutions. They are sensitive to acidic media, which should not be used. Solubilisation occurs by the formation of sodium carboxylate groups from the anionic polyacid. The polyelectrolyte formed in this way is readily soluble and shows a rapid rate of dissolution. However, the presence of electrolytes such as magnesium or calcium salts from hard water can inhibit removal [191]. [Pg.107]

Xiao-Hua Yang et al. [ 1 ] determined nanomolar concentrations of individual low molecular weight carboxylic acids (and amines) in seawater. Diffusion of the acids across a hydrophobic membrane was used to concentrate and separate carboxylic acids from inorganic salts and most other organic compounds prior to the application of ion chromatography. Acetic propionic acid, butyric-1 acid, butyric-2 acid, valeric and pyruvic acid, acrylic acid and benzoic acid were all found in reasonable concentrations in seawater. [Pg.58]


See other pages where Carboxylic salts, from is mentioned: [Pg.572]    [Pg.515]    [Pg.12]    [Pg.153]    [Pg.572]    [Pg.572]    [Pg.515]    [Pg.12]    [Pg.153]    [Pg.572]    [Pg.442]    [Pg.276]    [Pg.59]    [Pg.88]    [Pg.49]    [Pg.381]    [Pg.405]    [Pg.488]    [Pg.164]    [Pg.27]    [Pg.648]    [Pg.121]    [Pg.192]    [Pg.193]    [Pg.407]    [Pg.613]    [Pg.203]    [Pg.268]    [Pg.354]    [Pg.141]    [Pg.377]    [Pg.45]    [Pg.126]   


SEARCH



Aldehydes from carboxylic acid salts

Anhydrides from carboxylic acid salts

Carboxylate salts

Carboxylic Acids, isolation from salts

Carboxylic Acids, isolation from salts reactions

Carboxylic acids ammonium salts from

Carboxylic salts

Esters from carboxylate salts

Esters from carboxylic acid salts

From carboxylate salts

From carboxylate salts

From carboxylic acid salts

Hydrocarbons from carboxylate salts

Imine salts from carboxylic acids

Nitriles from carboxylate salts

Synthesis of ketones from carboxylate salts

© 2024 chempedia.info