Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic esters, enol,

Carboxylic Ester Enolates with a-Bromo Boronic Esters... [Pg.1085]

Kunz, H, Mohr, J, Carbohydrates as chiral templates reactivity and stereoselectivity of carboxylic ester enolates, 7. Chem. Soc. Chem. Commun., 1315-1317, 1988. [Pg.501]

Methylsulfinyl enolates are more recently developed d -reagents. They are readily prepared from carboxylic esters and dimsyl anion. Methanesulfenic acid can be eliminated thermally after the condensation has taken place. An example is found in Bartlett s Brefeldin synthesis (P.A. Bartlett. 1978). [Pg.65]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

The Japp-Klingeraann coupling of aryidiazonium ions with enolates and other nucleophilic alkenes provides an alternative route to arylhydrazones. The reaction has most frequently been applied to P-ketoesters, in which deacylation follow S coupling and the indolization affords an indole-2-carboxylate ester. [Pg.65]

Replacement of a benzene ring by its isostere, thiophene, is one of the more venerable practices in medicinal chemistry. Application of this stratagem to the NSAID piroxicam, gives tenoxicam, 136, a drug with substantially the same activity, nie synthesis of this compound starts by a multi-step conversion of hydroxy thiophene carboxylic ester 130, to the sulfonyl chloride 133. Reaction of that with N-methylglycinc ethyl ester, gives the sulfonamide 134. Base-catalyzed Claisen type condensation serves to cyclize that intermediate to the p-keto ester 135 (shown as the enol tautomer). The final product tenoxicam (136) is obtained by heating the ester with 2-aminopyridine [22]. [Pg.173]

Darzens reactions between the chiral imine 52 and a-halo enolates 53 for the preparation of nonracemic aziridine-2-carboxylic esters 54 (Scheme 3.17) were studied by Fujisawa and co-workers [61], It is interesting to note that the lithium enolate afforded (2K,3S)-aziridirie (2i ,3S)-54 as the sole product, whereas the zinc enolate give rise to the isomer (2S,3i )-54. The a-halogen did not seem to affect the stereoselectivity. [Pg.80]

More recently, Davis and co-workers developed a new method for the asymmetric syntheses of aziridine-2-carboxylates through the use of an aza-Darzens-type reaction between sulfinimines (N-sulfinyl imines) and a-haloenolates [62-66]. The reaction is highly efficient, affording cis- N-sulfmylaziridine-2-carboxylic esters in high yield and diastereoselectivity. This method has been used to prepare a variety of aziridines with diverse ring and nitrogen substituents. As an example, treatment of sulfinimine (Ss)-55 (Scheme 3.18) with the lithium enolate of tert-butyl bromoacetate gave aziridine 56 in 82% isolated yield [66],... [Pg.80]

Ester enolates which contain the chiral information in the acid moiety have been widely used in alkylations (see Section D.1.1.1,3.) as well as in additions to carbon-nitrogen double bonds (sec Section D.1.4.2.). Below are examples of the reaction of this type of enolate with aldehydes720. The (Z)-enolate generated from benzyl cinnamate (benzyl 3-phenylpropcnoate) and lithium (dimethylphenylsilyl)cuprate affords the /h/-carboxylic acid on addition to acetaldehyde and subsequent hydrogenolysis, The diastereoselectivity is 90 10. [Pg.486]

When the related saccharin derived sultam (R)-29 is converted into the (Z)-boron enolate and subsequently treated with aldehydes,. vy -diastereomers 30 result almost exclusively. Thus, the diasteromeric ratios, defined as the ratio of the major product to the sum of all other stereoisomers, surpass 99 1. Hydroperoxide assisted saponification followed by esterification provides carboxylic esters 31 with recovery of sultam 32106a. [Pg.503]

Molecules in which the enolic double bond is in conjugation with another double bond. Some of these are shown in Table 2.1. As the table shows, carboxylic esters have a much smaller enolic content than ketones. In molecules... [Pg.73]

The reaction between acyl halides and alcohols or phenols is the best general method for the preparation of carboxylic esters. It is believed to proceed by a 8 2 mechanism. As with 10-8, the mechanism can be S l or tetrahedral. Pyridine catalyzes the reaction by the nucleophilic catalysis route (see 10-9). The reaction is of wide scope, and many functional groups do not interfere. A base is frequently added to combine with the HX formed. When aqueous alkali is used, this is called the Schotten-Baumann procedure, but pyridine is also frequently used. Both R and R may be primary, secondary, or tertiary alkyl or aryl. Enolic esters can also be prepared by this method, though C-acylation competes in these cases. In difficult cases, especially with hindered acids or tertiary R, the alkoxide can be used instead of the alcohol. Activated alumina has also been used as a catalyst, for tertiary R. Thallium salts of phenols give very high yields of phenolic esters. Phase-transfer catalysis has been used for hindered phenols. Zinc has been used to couple... [Pg.482]

Vinylic and aryl halides can be used to vinylate or arylate carboxylic esters (but not ketones) by the use of NiBr2 as a catalyst. " However, ketones have been vinylated by treating their enol acetates with vinylic bromides in the presence of a Pd... [Pg.552]

This reaction illustrates the striking difference in behavior between carboxylic esters on the one hand and aldehydes and ketones on the other. When a carbanion such as an enolate ion is added to the carbonyl group of an aldehyde or ketone (16-41), the H or R is not lost, since these groups are much poorer leaving groups than OR. Instead the intermediate similar to 146 adds a proton at the oxygen to give a hydroxy compound. [Pg.571]

A number of other methods exist for the a halogenation of carboxylic acids or their derivatives. Acyl halides can be a brominated or chlorinated by use of NBS or NCS and HBr or HCl. The latter is an ionic, not a free-radical halogenation (see 14-2). Direct iodination of carboxylic acids has been achieved with I2—Cu acetate in HOAc. " ° Acyl chlorides can be a iodinated with I2 and a trace of HI. Carboxylic esters can be a halogenated by conversion to their enolate ions with lithium A-isopropylcyclohexylamide in THF and treatment of this solution at -78°C with... [Pg.778]

Ketones and carboxylic esters can be a hydroxylated by treatment of their enolate forms (prepared by adding the ketone or ester to LDA) with a molybdenum peroxide reagent (MoOs-pyridine-HMPA) in THF-hexane at -70°C. The enolate forms of amides and estersand the enamine derivatives of ketones can similarly be converted to their a hydroxy derivatives by reaction with molecular oxygen. The M0O5 method can also be applied to certain nitriles. Ketones have also been Qc hydroxylated by treating the corresponding silyl enol ethers with /n-chloroperoxy-... [Pg.915]

Both alcohols and phenols add to ketenes to give carboxylic esters (R2C=C= O+ROH —> R2CHC02R). This has been done intramolecularly (with the ketene end of the molecule generated and used in situ) to form medium- and large-ring lactones. In the presence of a strong acid, ketene reacts with aldehydes or ketones (in their enol forms) to give enol acetates. [Pg.997]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

In the presence of a strong base, the ot carbon of a carboxylic ester can condense with the carbonyl carbon of an aldehyde or ketone to give a P-hydroxy ester, which may or may not be dehydrated to the a,P-unsaturated ester. This reaction is sometimes called the Claisen reaction,an unfortunate usage since that name is more firmly connected to 10-118. In a modem example of how the reaction is used, addition of tert-butyl acetate to LDA in hexane at -78°C gives the lithium salt of ferf-butyl acetate, " (12-21) an enolate anion. Subsequent reaction a ketone provides a simple rapid alternative to the Reformatsky reaction (16-31) as a means of preparing P-hydroxy erf-butyl esters. It is also possible for the a carbon of an aldehyde or ketone to add to the carbonyl carbon of a carboxylic ester, but this is a different reaction (10-119) involving nucleophilic substitution and not addition to a C=0 bond. It can, however, be a side reaction if the aldehyde or ketone has an a hydrogen. [Pg.1224]

Enol ethers are oxidized to carboxylic esters (RCH=CHOR ... [Pg.1539]

Diverging results have been reported for the carbenoid reaction between alkyl diazoacetates and silyl enol ethers 49a-c. Whereas Reissig and coworkers 60) observed successful cyclopropanation with methyl diazoacetate/Cu(acac)2, Le Goaller and Pierre, in a note without experimental details u8), reported the isolation of 4-oxo-carboxylic esters for the copper-catalyzed decomposition of ethyl diazoacetate. According to this communication, both cyclopropane and ring-opened y-keto ester are obtained from 49 c but the cyclopropane suffers ring-opening under the reaction conditions. [Pg.112]

Additionally, it has been shown that novel benzylidene titanium complexes of type 74 react with polymer-bound carboxylic esters to form the corresponding enol ethers (Scheme 28).79... [Pg.418]

Several applications of this methodology are known. For the determination of the relative configuration of the stereocenter and the axial chiral unit of 71, the product of a diastereoselective ester enolate Claisen rearrangement of 70, with AgBF4 a cycli-zation to 72 was initiated. Then the carboxylic acid was reduced to alcohol 73 and the position of the substituents was investigated by NMR and by the use of NMR shift-reagents (Scheme 15.16) [32], Control experiments ensured the stereospecifi-city of the cyclization and the reduction step. There are further examples of this strategy [33]. [Pg.886]

The Mechanism of the Ethyl Acetoacetate Synthesis—Before the tautomerism of ethyl acetoacetate is discussed we must consider the mechanism of its formation, which for decades has been the subject of lively discussion and was conclusively explained only in recent years (Scheibler). It has been found that even the C=0-group of the simple carboxylic esters, although in other respects inferior in activity to the true carbonyl group, can be enolised by alkali metals. Thus ethyl acetate is converted by potassium into the potassium salt of the tautomeric enol with evolution of hydrogen ... [Pg.258]

As in carboxylic esters it is possible to substitute alkoxy groups of Fischer-type carbene complexes by non-carbon nucleophiles, such as other alcohols [73,214,218], enols [219], aliphatic amines [43,64,66,220-224], aniline [79], imines [225], or pyrroles [226]. Strong nucleophiles can also lead to a dealkylation of methoxy-substituted carbene complexes (5 2 at the methyl group, [227]), in the same way as methyl esters can be cleaved by nucleophiles such as iodide. Carbon... [Pg.35]

The different carbosilane dendrimer supports (generation 0, 1 R=H, Me) were then used for the synthesis of the / -lactam (13). As shown in Scheme 7.2, the first step was again an immobilization of a carboxylic acid via ester bond formation. Treatment with LDA and ZnCl2 yielded in situ the corresponding zinc ester enolate (11) which reacts with N-(trimethylsilyl)phenylimine (12) to form the final four membered lactam ring (13). The last reaction step includes several intermediates. The last one is a supported /9-amino ester which undergoes spontaneous... [Pg.314]

Rearrangement of allyl trimethylsilyl ketene acetal, prepared by reaction of allylic ester enolates with trimethylsilyl chloride, to yield Y,5-unsaturated carboxylic a-cids. The Ireland-Claisen rearrangement seems to be advantageous to the other variants of the Claisen rearrangement in terms of E/Z geometry control and mild conditions. [Pg.137]


See other pages where Carboxylic esters, enol, is mentioned: [Pg.202]    [Pg.203]    [Pg.202]    [Pg.203]    [Pg.11]    [Pg.385]    [Pg.88]    [Pg.34]    [Pg.78]    [Pg.25]    [Pg.783]    [Pg.916]    [Pg.923]    [Pg.998]    [Pg.1214]    [Pg.1238]    [Pg.1526]    [Pg.567]    [Pg.67]   


SEARCH



Carboxylate enolate

Carboxylate enolates

Carboxylic esters, magnesium enolate

Enol esters

Enol esters reaction with carboxylic acids

Enol esters with carboxylic acids

Enol esters, from alkynes with carboxylic acids

Enolate anions, from carboxylic esters

Enolates enol esters

Ester enolate

Esters enolates

Esters enolization

Magnesium enolates thiol carboxylic esters

© 2024 chempedia.info