Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acid purification

Berglund KA, Elankovan P, Glassner DA (1991) Carboxylic acid purification and crystallization proass. US Patent 5,034,105 Berglund KA, Yedur S, Dunuwila DD (1999) Succinic acid production and purification. US Patent 5,958,744... [Pg.68]

Interest in synthetic naphthenic acid has grown as the supply of natural product has fluctuated. Oxidation of naphthene-based hydrocarbons has been studied extensively (35—37), but no commercially viable processes are known. Extensive purification schemes must be employed to maximize naphthene content in the feedstock and remove hydroxy acids and nonacidic by-products from the oxidation product. Free-radical addition of carboxylic acids to olefins (38,39) and addition of unsaturated fatty acids to cycloparaffins (40) have also been studied but have not been commercialized. [Pg.511]

Of the removal processes that have attained commercial status, the current favorite employs a shiny of lime or limestone. The activity of the reagent is promoted by the addition of small amounts of carboxylic acids such as adipic acid. The gas and the shiny are contacted in a spray tower. The calcium salt is discarded. A process that employs aqueous sodium citrate, however, is suited for the recoveiy of elemental sulfur. The citrate solution is regenerated and recycled. (Kohl and Riesenfeld, Gas Purification, Gulf, 1985, p. 356.)... [Pg.2110]

Chirazymes. These are commercially available enzymes e.g. lipases, esterases, that can be used for the preparation of a variety of optically active carboxylic acids, alcohols and amines. They can cause regio and stereospecific hydrolysis and do not require cofactors. Some can be used also for esterification or transesterification in neat organic solvents. The proteases, amidases and oxidases are obtained from bacteria or fungi, whereas esterases are from pig liver and thermophilic bacteria. For preparative work the enzymes are covalently bound to a carrier and do not therefore contaminate the reaction products. Chirazymes are available form Roche Molecular Biochemicals and are used without further purification. [Pg.520]

In a modified procedure the free carboxylic acid is treated with a mixture of mercuric oxide and bromine in carbon tetrachloride the otherwise necessary purification of the silver salt is thereby avoided. This procedure has been used in the first synthesis of [1.1.1 ]propellane 10. Bicyclo[l.l.l]pentane-l,3-dicarboxylic acid 8 has been converted to the dibromide 9 by the modified Hunsdiecker reaction. Treatment of 9 with t-butyllithium then resulted in a debromination and formation of the central carbon-carbon bond thus generating the propellane 10." ... [Pg.168]

This procedure provides a convenient method for the esterification ol a wide variety of carboxylic acids. The reaction proceeds smoothly with sterically hindered acids6 and with acids which contain various functional groups. Esters are obtained in high purity using Kugelrohr distillation as the sole purification technique. In cases where traces of dichloromethane present no problems, the crude product is usually pure enough to be used directly in subsequent reactions. Methyl and ethyl ethers of phenols may also be prepared by this procedure (see Note 8). [Pg.62]

To a solution of the carboxylic acid (2.1 mmol) in THF (40 ml) was added, 2-trimethylsilylethanol (4.2mmol) and TMSC1 (16,5mmol). The mixture was stirred under reflux for 36 h, cooled, and concentrated in vacuo. Direct chromatographic purification gave the ester (73-98%). [Pg.71]

Adipic acid, 219.2 g (1.5 mol), and 77.6 g (1.25 mol) of 1,2-ethanediol are weighed into a 500-mL glass reactor equipped with a mechanical stirrer, a nitrogen inlet, and a distillation head connected to a condenser and a receiver fiask. The reactor is placed in a salt bath preheated at 180°C and the temperature is dien raised gradually to 220°C (see note at end of procedure) until the greater part of water has been removed (3 h). The reactor is cooled down to 160°C and vacuum is applied slowly to ca. 0.07 mbar (30 min). Temperature is ramped to 220°C (see note below) at a rate of l°C/min and reaction is continued for an additional 90 min. At the end of reaction, the carboxylic acid endgroup content is close to 1.90 mol/kg. No purification of final polyester is carried out. [Pg.95]

White H, R Feicht, C Huber, F Lottspeich, H Simon (1991) Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum. Biol Chem Hoppe-Seyler 372 999-1005. [Pg.192]

After identifying the optimal etherification conditions, our attention turned to isolation of 18 in diastereomerically pure form. Diastereomers 18 and 19 were not crystalline, but, fortunately, the corresponding carboxylic acid 71 was crystalline. Saponification of the crude etherification reaction mixture of 18 and 19 with NaOH in MeOH resulted in the quantitative formation of carboxylic acids 71 and 72 (17 1) (Scheme 7.22). Since the etherification reaction only proceeded to 75-80% conversion, there still remained starting alcohol 10. Unfortunately, all attempts to fractionally crystallize the desired diastereomer 71 from the crude mixture proved unfruitful. It was reasoned that crystallization and purification of 71 would be possible via an appropriate salt. A screen of a variety of amines was then undertaken. During the screening process it was discovered that when NEt3 was added... [Pg.208]

An improved method for the synthesis of 4-hydroxy-1-oxo-l,2-dihydroisoquinoline-3-carboxylic acid derivatives 130 was presented <06S1971>. This improved three-step method efficiently converts phthalic anhydride 131 to the desired dihydroisoquinolines 130 in high yields over three steps with only one purification. [Pg.331]

Interestingly, the Fischer indole synthesis does not easily proceed from acetaldehyde to afford indole. Usually, indole-2-carboxylic acid is prepared from phenylhydrazine with a pyruvate ester followed by hydrolysis. Traditional methods for decarboxylation of indole-2-carboxylic acid to form indole are not environmentally benign. They include pyrolysis or heating with copper-bronze powder, copper(I) chloride, copper chromite, copper acetate or copper(II) oxide, in for example, heat-transfer oils, glycerol, quinoline or 2-benzylpyridine. Decomposition of the product during lengthy thermolysis or purification affects the yields. [Pg.52]

As a chemical raw material, ethanol is used for the production of a range of monomers and solvents, and is essential in pharmaceutical purification. In the presence of an acid catalyst ethanol reacts with carboxylic acids to produce ethyl esters. The two largest-volume ethyl esters are ethyl acrylate (from ethanol and acrylic acid) and ethyl acetate (from ethanol and acetic acid). Ethyl acrylate is a... [Pg.203]

CNTs can be processed such as purification based on oxidation, cutting, and activation by forming carboxylic acid and hydroxyl groups on the surface of CNTs, which can further be linked with other biomolecules to realize special function (Ajayan et al., 1994). As shown in Fig. 9.19, ferritin molecules attached to the surface of CNTs via covalent bond, the nanocomposites with ferritin molecules-functionalized CNTs own better mechanical, thermal, and electronic properties... [Pg.203]


See other pages where Carboxylic acid purification is mentioned: [Pg.81]    [Pg.9]    [Pg.62]    [Pg.501]    [Pg.422]    [Pg.612]    [Pg.114]    [Pg.115]    [Pg.148]    [Pg.99]    [Pg.84]    [Pg.304]    [Pg.241]    [Pg.438]    [Pg.79]    [Pg.87]    [Pg.47]    [Pg.165]    [Pg.150]    [Pg.193]    [Pg.147]    [Pg.330]    [Pg.64]    [Pg.95]    [Pg.76]    [Pg.105]    [Pg.109]    [Pg.257]    [Pg.746]    [Pg.214]    [Pg.44]   
See also in sourсe #XX -- [ Pg.55 ]

See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Acids, purification

© 2024 chempedia.info