Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonylation intramolecular cyclization reactions

Imides can hydrolyze to give a mixture of products resulting from nucleophilic attack of water on either carbonyl carbon, as shown in Figure 13. In the case of cyclic imides, such as maleimide, an intramolecular cyclization reaction can... [Pg.57]

Gopalan, A. S. Intramolecular cyclization reactions of carbonyl derivatives of hydroxy-sulfones. Tetrahedron 2002, 58, 3737-3746. 363... [Pg.139]

In intermolecular PET processes, radical ions are formed either as close pairs or as free species from neutral molecules (Sch. 1) [2,6]. Most commonly, carbonyl compounds or related derivatives as for example enol ethers, cyclopropyl ketones, and siloxycyclopropanes are used for intramolecular cyclization reactions. With the exception of cycloadditions the ring-building key step is always an intramolecular bond formation. In PET... [Pg.270]

In addition to cationic cyclizations, other conditions for the cyclization of polyenes and of ene-ynes to steroids have been investigated. Oxidative free-radical cyclizations of polyenes produce steroid nuclei with exquisite stereocontrol. For example, treatment of (259) and (260) with Mn(III) and Cu(II) afford the D-homo-5a-androstane-3-ones (261) and (262), respectively, in approximately 30% yield. In this cyclization, seven asymmetric centers are established in one chemical step (226,227). Another intramolecular cyclization reaction of iodo-ene poly-ynes was reported using a carbopaUadation cascade terminated by carbonylation. This carbometalation—carbonylation cascade using CO at 111 kPa (1.1 atm) at 70°C converted an acycHc iodo—tetra-yne (263) to a D-homo-steroid nucleus (264) [162878-44-6] in approximately 80% yield in one chemical step (228). Intramolecular aimulations between two alkynes and a chromium or tungsten carbene complex have been examined for the formation of a variety of different fiised-ring systems. A tandem Diels-Alder—two-alkyne annulation of a triynylcarbene complex demonstrated the feasibiHty of this strategy for the synthesis of steroid nuclei. Complex (265) was prepared in two steps from commercially available materials. Treatment of (265) with Danishefsky s diene in CH CN at room temperature under an atmosphere of carbon monoxide (101.3 kPa = 1 atm), followed by heating the reaction mixture to 110°C, provided (266) in 62% yield (TBS = tert — butyldimethylsilyl). In a second experiment, a sequential Diels-Alder—two-alkyne annulation of triynylcarbene complex (267) afforded a nonaromatic steroid nucleus (269) in approximately 50% overall yield from the acycHc precursors (229). [Pg.442]

The carbonyl group of radical 5-54 can undergo an intramolecular cyclization reaction with the alkyl radical. The shared bond between the five- and six-membered rings then breaks to form the product and a new tri- -butyltin radical, which continues the chain. [Pg.335]

The Nef reaction often represents the key transformation in a reaction sequence in which it is involved. The synthesis of simple aliphatic ketones or aldehydes is probably not the most useful application of the Nef reaction. More important is the access to dicarbonyl compounds for intramolecular cyclization reactions leading to a large variety of carbocycles or heterocycles. However, the method can be capricious and success depends on the structure of the substrate. In order to overcome synthetic drawbacks, several roundabout methods have been devised for application to peculiar polyfunctionalized molecules. The number of modifications of the Nef reaction which can be carried out under a wide variety of conditions clearly reveals that no procedure is of general application. The scope and limitations of the different modifications will be discussed considering the structure of desired carbonyl derivative. [Pg.939]

Dicarborative telomerization has also been successfully applied to intramolecular cyclization reactions. Various tetraenes with enamines, indole, nitroalkanes or carbonyl-stabilized carba-nions give good yields of carbocyclic or heterocyclic five-membered rings, with predominantly the trans arrangement of the two different unsaturated side chains14,15. [Pg.418]

Unlike the cases of alkenes, Wacker-type intermolecular oxypalladation reactions of alkynes have not been extensively investigated, although their intramolecular cyclization reactions have been developed into synthetically useful procedures (Sects. V3.2). In principle, they can proceed by a few alternative paths shown for the cases of terminal alkynes in Scheme 14. In reality, however, alkynyl C—H activation by Pd to give alkynylpalladium derivatives shown in Scheme 3 may well be the dominant path, as suggested by the carbonylative oxidation of terminal alkynes to give alkynoic acid esters shown in Scheme 15. Oxidative dimerization of alkynes is a potentially serious side reaction. Further systematic investigation of this fundamentally important process appears to be highly desirable. [Pg.1232]

The Pictet-Spengler reaction is an acid-catalyzed intramolecular cyclization of an intermediate imine of 2-arylethylamine, formed by condensation with a carbonyl compound, to give 1,2,3,4-tetrahydroisoquinoline derivatives. This condensation reaction has been studied under acid-catalyzed and superacid-catalyzed conditions, and a linear correlation had been found between the rate of the reaction and the acidity of the reaction medium. Substrates with electron-donating substituents on the aromatic ring cyclize faster than the corresponding unsubstituted compounds, supporting the idea that the cyclization process is involved in the rate-determining step of the reaction. [Pg.470]

Chapter 10 considers the role of reactive intermediates—carbocations, carbenes, and radicals—in synthesis. The carbocation reactions covered include the carbonyl-ene reaction, polyolefin cyclization, and carbocation rearrangements. In the carbene section, addition (cyclopropanation) and insertion reactions are emphasized. Recent development of catalysts that provide both selectivity and enantioselectivity are discussed, and both intermolecular and intramolecular (cyclization) addition reactions of radicals are dealt with. The use of atom transfer steps and tandem sequences in synthesis is also illustrated. [Pg.1329]

The transformation of2-734 involves an initial generation of an organosamarium species 2-735 with subsequent nucleophilic addition to the lactone carbonyl. Presumably, a tetrahedral intermediate 2-736 is formed that collapses to yield the ketone 2-737. This reacts with Sml2 to give a ketyl radical 2-738, which undergoes an intramolecular S-exo radical cyclization reaction with the alkene moiety. The resultant... [Pg.159]

As described above, our synthetic strategy involves the convergent construction of the central cyclopentanone ring with a carbonylative cross-coupling reaction and a photo-Nazarov cyclization reaction (Chart 2.2). The electrophilic coupling component 51 was synthesized by an intramolecular Diels-Alder reaction [34] and the nucleophilic coupling component 52 by a vinyiogous Mukaiyama aldol reaction [35]. [Pg.31]

The presence of a 2-substitutent in 3-phenylazirines (17, R —H in Scheme 21) modifies the mode of reaction with molybdenum carbonyl.47 In contrast to pyrazine formation for (17, R =H see Section V,C,2), the alkenyl azirine (18, Scheme 22) is transformed in excellent yield into 2-phenyl-5-carboxy-methylpyrrole. This product probably arises by intramolecular cyclization within an intermediate dienylnitrene intermediate, and related reactions have been devised to synthesize isoxazoles (see Section IV,E,2) and pyrazoles (see Section IV,D,1).47 The molybdenum carbonyl-promoted formation of 2,5-disubstituted pyrroles47 has analogy in uncatalyzed thermal, but not photochemical decomposition of 3-phenyl-2//-azirine 2-acrylate.49... [Pg.332]

Epoxides can also be reductively opened to form a radical. An example of an intramolecular cyclization of such a radical has recently been reported <06TL7755>. Treatment of 40 with Cp2TiCl generates an intermediate alkoxy radical, which then adds to the carbonyl of the formate ester. The product, 41, is formed as a 2 1 mixture of isomers at the anomeric carbon. This reaction is one of the first examples of a radical addition to an ester. The major byproduct of this reaction is the exo-methylene compound, 42, arising from a P-hydrogen elimination. [Pg.77]

Alkoxides that arise from simple carbonyl additions have also functioned as excellent in situ nucleophiles for intramolecular hydroalkoxylation reactions. Garbinols derived from the addition of allyltin reagents have proved to be potent nucleophiles in reactions of this type (Equation (99)),349 and this approach has also been used for the combined addition-cyclization of alkynals under Pd(n)350 or Cu(i)351 catalysis, and alkynones under Pd(n) catalysis.352... [Pg.676]

Thermolysis of 219a and 219b produced the benzofulvenes 221 as expected. However, the formation of 222 from 219c can best be accounted for by regarding the biradical 220a as the carbene 220b to allow an intramolecular C-H insertion reaction. The presence of a carbonyl group in 219 also permits the use of samarium(II) iodide, samarium(III) chloride, boron trifluoride and trifluoroacetic acid to promote the Schmittel cyclization reaction. [Pg.1118]


See other pages where Carbonylation intramolecular cyclization reactions is mentioned: [Pg.442]    [Pg.795]    [Pg.13]    [Pg.167]    [Pg.234]    [Pg.234]    [Pg.1036]    [Pg.207]    [Pg.442]    [Pg.285]    [Pg.1036]    [Pg.259]    [Pg.191]    [Pg.316]    [Pg.127]    [Pg.553]    [Pg.634]    [Pg.140]    [Pg.795]    [Pg.949]    [Pg.164]    [Pg.327]    [Pg.197]    [Pg.336]    [Pg.148]    [Pg.127]    [Pg.209]    [Pg.50]    [Pg.248]    [Pg.96]    [Pg.730]    [Pg.10]    [Pg.175]   


SEARCH



Carbonyl intramolecular

Carbonylative cyclization

Cyclization reactions

Cyclization-carbonylation

Cyclization-carbonylation reaction

Cyclizations intramolecular

Cyclizative Carbonylations

Intramolecular cyclization

Intramolecular reactions cyclizations

© 2024 chempedia.info