Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonylation definition

The flash point of PPS, as measured by ASTM D1929, is greater than 500°C. Combustion products of PPS include carbon, sulfur oxides, and carbonyl sulfide. Specific hazards are defined by the OSHA Hazard Communication Standard (158). Based on information in 1995, PPS does not meet any of the hazard definitions of this standard. [Pg.451]

When a Br nsted base functions catalytically by sharing an electron pair with a proton, it is acting as a general base catalyst, but when it shares the electron with an atom other than the proton it is (by definition) acting as a nucleophile. This other atom (electrophilic site) is usually carbon, but in organic chemistry it might also be, for example, phosphorus or silicon, whereas in inorganic chemistry it could be the central metal ion in a coordination complex. Here we consider nucleophilic reactions at unsaturated carbon, primarily at carbonyl carbon. Nucleophilic reactions of carboxylic acid derivatives have been well studied. These acyl transfer reactions can be represented by... [Pg.349]

Instead of the definition in Eq. (7-82), the selectivity is often written as log k,). Another way to consider a selectivity-reactivity relationship is to compare the relative effects of a series of substituents on a pair of reactions. This is what is done when Hammett plots are made for a pair of reactions and their p values are compared. The slope of an LEER is a function of the sensitivity of the process being correlated to structural or solvent changes. Thus, in a family of closely related LFERs, the one with the steepest slope is the most selective, and the one with the smallest slope is the least selective.Moreover, the intercept (or some arbitrarily selected abscissa value, usually log fco for fhe reference substituent) should be a measure of reactivity in each reaction series. Thus, a correlation should exist between the slopes (selectivity) and intercepts (reactivity) of a family of related LFERs. It has been suggested that the slopes and intercepts should be linearly related, but the conditions required for linearity are seldom met, and it is instead common to find only a rough correlation, indicative of normal selectivity-reactivity behavior. The Br nsted slopes, p, for the halogenation of a series of carbonyl compounds catalyzed by carboxylate ions show a smooth but nonlinear correlation with log... [Pg.372]

Nucleosides are compounds formed when a base is linked to a sugar via a gly-cosidic bond (Figure 11.10). Glycosidic bonds by definition involve the carbonyl carbon atom of the sugar, which in cyclic structures is joined to the ring... [Pg.331]

Recently a definitive study of several isoxazol-5-ones using infrared and ultraviolet spectroscopy (Table I) has shown that the balance between the various tautomers is a delicate one and that all three of the structural types can predominate depending upon the nature of the substituents and the conditions of the experiment. However, the hydroxy form is only found when it is stabilized by chelation (i.e., a carbonyl substituent in the 4-position). The other compounds exist in the CH form in nonpolar media increasing polarity of the solvent stabilizes increasing amounts of the more polar NH forms. [Pg.38]

A substantial proportion of cross-linked material was obtained with 2 x 107 r, clearly indicating that ring participation, probably following scission43, is important. The infrared spectra of these polymers were not very informative, but definitely showed carbonyl and C=C bands, obviously coming from cleaved rings. [Pg.75]

This area of reactivity has been the subject of excellent reviews (J5). Silyl enol ethers are not sufficiently nucleophilic to react spontaneously with carbonyl compounds they do so under the influence of either Lewis acids or fluoride ion, as detailed above. Few clear trends have emerged from the somewhat limited number of definitive studies reported so far, with ambiguities in diastereoisomeric assignments occasionally complicating the issue even further. [Pg.68]

It is evident from Table 2 that the chemical shift data are very similar in both states of aggregation. Only the carbonyl carbon show a small but definite shifts, 2 ppm. In the solution state, in acetone -d6 solution the relaxation times T1 of the pyranose carbon atoms are very similar and only slightly smaller than those of the carbon atom of the methyl group in the acetyl substituent, while the T1-value of the carbon atom of the carbonyl group is considerably higher. [Pg.8]

Considerable investigation of the octahedral carbonyl complexes has been carried out. To a certain degree this is because definitive evidence for associative substitution in the case of type A complexes has been conspicuously lacking whereas for the type B compounds there seem to be several well-substantiated examples. A general summary of the main types of octahedral substitutions which have been kinetically examined is given in Table 15. [Pg.35]

In this chapter, the definitions used by Perrin in his book on pA a prediction (which also includes a very convenient compilation of o values) will be used. One must be alert to the importance of the number of hydrogens directly attached to the carbonyl carbon several groups have pointed out that aldehydes and ketones give separate but parallel lines, with formaldehyde displaced by the same amount again. What this means is that given one equilibrium constant for an aldehyde (or ketone) one may estimate the equilibrium constant for other aldehydes (or ketones) from this value and p for the addition using a value from experiment, if available, or estimated if necessary. This assumes that there is no large difference in steric effects between the reference compound and the unknown of interest. [Pg.12]

The reaction of carbonyl compounds to olefins often yields products difficult to obtain synthetically by other routes. The excellent yields obtainable under proper conditions make this reaction of definite preparative interest. Examples of some synthetic applications of oxetane formation follow ... [Pg.100]

However, the pathways for these reactions, particularly in the gas phase, have been only -.rtially characterized. In a wide variety of these reactions, coordinatively unsaturated, highly reactive metal carbonyls are produced [1-18]. The products of many of these photochemical reactions act as efficient catalysts. For example, Fe(C0)5 can be used to generate an efficient photocatalyst for alkene isomerization, hydrogenation, and hydrosilation reactions [19-23]. Turnover numbers as high as 3000 have been observed for Fe(C0)5 induced photocatalysis [22]. However, in many catalytically active systems, the active intermediate has not been definitively determined. Indeed, it is only recently that significant progress has been made in this area [20-23]. [Pg.86]

A metal cluster can be considered as a polynuclear compound which contains at least one metal-metal bond. A better definition of cluster catalysis is a reaction in which at least one site of the cluster molecule is mechanistically necessary. Theoretically, homogeneous clusters should be capable of multiple-site catalysis. Many heterogeneous catalytic reactions require multiple-site catalysis and for these reasons discrete molecular metal clusters are often proposed as models of metal surfaces in the processes of chemisorption and catalysis. The use of carbonyl clusters as catalysts for hydrogenation reactions has been the subject of a number of papers, an important question actually being whether the cluster itself is the species responsible for the hydrogenation. Often the cluster is recovered from the catalytic reaction, or is the only species spectroscopically observed under catalytic conditions. These data have been taken as evidence for cluster catalysis. [Pg.125]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

In spectroscopy we may distinguish two types of process, adiabatic and vertical. Adiabatic excitation energies are by definition thermodynamic ones, and they are usually further defined to refer to at 0° K. In practice, at least for electronic spectroscopy, one is more likely to observe vertical processes, because of the Franck-Condon principle. The simplest principle for understandings solvation effects on vertical electronic transitions is the two-response-time model in which the solvent is assumed to have a fast response time associated with electronic polarization and a slow response time associated with translational, librational, and vibrational motions of the nuclei.92 One assumes that electronic excitation is slow compared with electronic response but fast compared with nuclear response. The latter assumption is quite reasonable, but the former is questionable since the time scale of electronic excitation is quite comparable to solvent electronic polarization (consider, e.g., the excitation of a 4.5 eV n — n carbonyl transition in a solvent whose frequency response is centered at 10 eV the corresponding time scales are 10 15 s and 2 x 10 15 s respectively). A theory that takes account of the similarity of these time scales would be very difficult, involving explicit electron correlation between the solute and the macroscopic solvent. One can, however, treat the limit where the solvent electronic response is fast compared to solute electronic transitions this is called the direct reaction field (DRF). 49,93 The accurate answer must lie somewhere between the SCRF and DRF limits 94 nevertheless one can obtain very useful results with a two-time-scale version of the more manageable SCRF limit, as illustrated by a very successful recent treatment... [Pg.87]


See other pages where Carbonylation definition is mentioned: [Pg.4]    [Pg.4]    [Pg.141]    [Pg.180]    [Pg.118]    [Pg.474]    [Pg.259]    [Pg.767]    [Pg.258]    [Pg.420]    [Pg.54]    [Pg.565]    [Pg.36]    [Pg.48]    [Pg.565]    [Pg.74]    [Pg.80]    [Pg.487]    [Pg.163]    [Pg.38]    [Pg.49]    [Pg.90]    [Pg.66]    [Pg.127]    [Pg.6]    [Pg.260]    [Pg.390]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Carbonyl compounds definition

Carbonyl group definition

© 2024 chempedia.info