Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl groups hydride

Synthetically useful stereoselective reductions have been possible with cyclic carbonyl compounds of rigid conformation. Reduction of substituted cyclohexanone and cyclopentan-one rings by hydrides of moderate activity, e.g. NaBH (J.-L. Luche, 1978), leads to alcohols via hydride addition to the less hindered side of the carbonyl group. Hydrides with bulky substituents 3IQ especially useful for such regio- and stereoselective reductions, e.g. lithium hydrotri-t-butoxyaluminate (C.H. Kuo, 1968) and lithium or potassium tri-sec-butylhydro-borates or hydrotri-sec-isoamylborates (=L-, K-, LS- and KS-Selectrides ) (H.C. Brown, 1972 B C.A. Brown, 1973 S. Krishnamurthy, 1976). [Pg.107]

Ans. The reaction is visualized in terms of the ionic structure (Sec. 14.4) for the carbonyl group. Hydride reduction proceeds in two steps. First, the metal hydride supplies a hydride ion which adds to the of the carbonyl group. Second, HjO supplies which adds to the of the carbonyl group ... [Pg.288]

Lithium aluminium hydride LiAlH is a useful and conveuient reagent for the selective reduction of the carbonyl group and of various other polar functional groups. It is obtained by treatment of finely powdered lithium hydride with an ethereal solution of anhydrous aluminium chloride ... [Pg.877]

Migration of a hydride ligand from Pd to a coordinated alkene (insertion of alkene) to form an alkyl ligand (alkylpalladium complex) (12) is a typical example of the a, /(-insertion of alkenes. In addition, many other un.saturated bonds such as in conjugated dienes, alkynes, CO2, and carbonyl groups, undergo the q, /(-insertion to Pd-X cr-bonds. The insertion of an internal alkyne to the Pd—C bond to form 13 can be understood as the c -carbopa-lladation of the alkyne. The insertion of butadiene into a Ph—Pd bond leads to the rr-allylpalladium complex 14. The insertion is usually highly stereospecific. [Pg.7]

Step 1 Hydride (hydrogen + two electrons) is transferred from boron to the positively polarized carbon of the carbonyl group The carbonyl oxygen bonds to boron... [Pg.630]

Neither sodium borohydride nor lithium aluminum hydride reduces isolated carbon-carbon double bonds This makes possible the selective reduction of a carbonyl group m a molecule that contains both carbon-carbon and carbon-oxygen double bonds... [Pg.631]

Approach of borohydnde to the top face of the carbonyl group is sterically hindered by one of the methyl groups The bottom face of the carbonyl group is less congested and the major product is formed by hydride transfer from this direction... [Pg.734]

The enzyme is a single enantiomer of a chiral molecule and binds the coenzyme and substrate m such a way that hydride is transferred exclusively to the face of the carbonyl group that leads to (5) (+) lactic acid Reduction of pyruvic acid m the absence of an enzyme however say with sodium borohydride also gives lactic acid but as a racemic mixture containing equal quantities of the R and S enantiomers... [Pg.735]

Reduction of an azide a nitrile or a nitro compound furnishes a primary amine A method that provides access to primary secondary or tertiary amines is reduction of the carbonyl group of an amide by lithium aluminum hydride... [Pg.933]

The carbonyl group of carbohydrates can be reduced to an alcohol function Typi cal procedures include catalytic hydrogenation and sodium borohydnde reduction Lithium aluminum hydride is not suitable because it is not compatible with the solvents (water alcohols) that are required to dissolve carbohydrates The products of carbohydrate reduc tion are called alditols Because these alditols lack a carbonyl group they are of course incapable of forming cyclic hemiacetals and exist exclusively m noncyclic forms... [Pg.1052]

A number of groups have criticized the ideas of Dauben and Noyce, especially the concept of PDC. Kamernitzsky and Akhrem, " in a thorough survey of the stereochemistry of addition reactions to carbonyl groups, accepted the existence of SAC but not of PDC. They point out that the reactions involve low energies of activation (10-13 kcal/mole) and suggest that differences in stereochemistry involve differences in entropies of activation. The effect favoring the equatorial alcohols is attributed to an electrostatic or polar factor (see also ref. 189) which may be determined by a difference in the electrostatic fields on the upper and lower sides of the carbonyl double bond, connected, for example, with the uncompensated dipole moments of the C—H bonds. The way this polar effect is supposed to influence the attack of the hydride is not made clear. [Pg.69]

The well-known reduction of carbonyl groups to alcohols has been refined in recent studies to render the reaction more regioselective and more stereoselective Per-fluorodiketones are reduced by lithium aluminum hydride to the corresponding diols, but the use of potassium or sodium borohydride allows isolation of the ketoalcohol Similarly, a perfluoroketo acid fluonde yields diol with lithium aluminum hydnde, but the related hydroxy acid is obtainable with potassium borohydnde [i f] (equations 46 and 47)... [Pg.308]

Reduction of amides (Section 22.9) Lithium aluminum hydride reduces the carbonyl group of an amide to a methylene group. Primary, secondary, or tertiary amines may be prepared by proper choice of the starting amide. R and R may be either alkyl or aryl. [Pg.957]

Grignard and alkyl lithium reagents were found to add to the carbonyl group of a tricyclic vinylogous amide. However, the same compound underwent the usual vinylogous reduction with lithium aluminum hydride (712). Grignard additions to di- and trichloroenamines gave a-chloro- and dichloroketones (713). [Pg.427]

Vinylogous amides undergo reduction with lithium aluminum hydride, by Michael addition of hydride and formation of an enolate, which can resist further reduction. Thus -aminoketones are usually produced (309, 563,564). However, the alternative selective reduction of the carbonyl group has also been claimed (555). [Pg.431]

So-called hydride reducing agents can transform carbonyl groups into alcohols, but their reducing ability depends on the nature of the hydride reagent. [Pg.140]

Interestingly, true hydrides, such as NaH and KH, do not reduce carbonyl groups. Using energies of hydride and methoxide (at left), calculate AH xn for the reduction of formaldehyde by H. Is this reaction more or less favorable than those based on ZH4 Can the low reactivity of NaH and KH be attributed to thermodynamic factors, or must kinetic factors be responsible ... [Pg.140]


See other pages where Carbonyl groups hydride is mentioned: [Pg.1326]    [Pg.355]    [Pg.142]    [Pg.219]    [Pg.164]    [Pg.1326]    [Pg.355]    [Pg.142]    [Pg.219]    [Pg.164]    [Pg.109]    [Pg.274]    [Pg.723]    [Pg.777]    [Pg.239]    [Pg.109]    [Pg.348]    [Pg.156]    [Pg.170]    [Pg.177]    [Pg.110]    [Pg.113]    [Pg.470]    [Pg.40]    [Pg.90]    [Pg.163]    [Pg.170]    [Pg.712]    [Pg.723]    [Pg.777]    [Pg.296]    [Pg.1037]   
See also in sourсe #XX -- [ Pg.109 , Pg.110 ]




SEARCH



Carbonyl groups hydride reduction

Group hydrides

Hydride Reduction of a Carbonyl Group

Pre-Reduction of Carbonyl Groups with Lithium Aluminum Hydride

© 2024 chempedia.info