Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds phenols

Condensations with carbonyl compounds phenol-formaldehyde resins. Acid or base catalyzes electrophilic substitution of carbonyl compounds in ortho and para positions of phenols to form phenol alcohols (Lederer-Manasse reaction). [Pg.448]

Acetoxylation. Transformations of Carbonyl Compounds. Phenolic Oxidation. Oxidation of Nitrogen Compounds. Hypervalent iodine Reagents in Combination with Azido Compounds. DIB and Sodium Azide in Combination with Other Reagents. Transformations of Alkynes Involving Thiophenols and Diphenyl Diselenide. Miscellaneous Reactions. [Pg.225]

Terpenoids can be classified also into hydrocarbons, alcohols, carbonyl compounds, phenols, acids, esters, oxides, and peroxides. [Pg.153]

Blaser and Spencer used aroyl halides in place of aryl halides, with aroyl chlorides being of specific interest as ubiquitous, relatively cheap compounds ( Blaser reaction ) [24], This latter reaction is normally conducted in aromatic solvents phosphines are not used here as catalyst ligands since they fully inhibit the reaction. In the same way, benzoic acid anhydrides can be used as the aryl source in combination with PdCl2 and catalytic amounts of NaBr [79]. In this reaction, one of the arenes is used in the coupling reaction by elimination of CO, whereas the other benzoate serves as the base. The benzoic acid thus formed can easily be recycled into the anhydride. The use of aryl and vinyl triflates according to Cacchi [25] and Stille [26] extends the scope of the Heck coupling to carbonyl compounds phenol derivatives act via triflate functionalization as synthetic equivalents of the aryl halides. The arylation of cyclic alkenes [27], electron-rich vinyl ethers [28], and allylic alcohols [29] is accessible through Heck reactions. Allylic alcohols yield C-C-saturated carbonyl compounds (aldehydes) for mechanistic reasons (y9-H elimination), as exemplified in eq. (6). [Pg.779]

Cat group III stimuli include nucleotides, phosphate compounds, various carbonyl compounds, phenolic compounds, o gen heterocycles and lactones. Many of these compounds are connion food substances and food additives. The human taste sensations elicited by these compounds are of an Indistinct variety and may be described with the terms pleasing, sweetish, creamy, etc. (22, 23). Nucleotides elicit a sensation which the Japanese term mami, or deliciousness (24). It is quite probable that small fiber systems similar to those seen in the cat are present in the human. [Pg.122]

Analysis Another lactone FGl reveals the true TM (A). Our normal discormection a of an a,p-unsaturated carbonyl compound gives us the 1,5-dicarbonyl compound (B) and the ketone (C) clearly derived from phenol. Alternatively we could disconnect bond b to the keto-ester (D) with the further discormection shown ... [Pg.131]

The most useful pseudo-halides are aryl triflates (trifluoromethylsulfonates) of phenols and enol triflates derived from carbonyl compounds[4,5,6]. [Pg.126]

In general, the xanthenes are synthesized by the reaction of two moles of a nucleophilic / -substituted phenol (10) with an electrophilic carbonyl compound (11), the reaction occurring most readily with an acid catalyst at temperatures of 100—200°C. [Pg.399]

In mordant dyes, phenols, naphthols, and enolizable carbonyl compounds, such as pyrazolones, are generally the couplers. As a rule, 2 1 metal complexes are formed ia the afterchroming process. A typical example of a mordant dye is Eriochrome Black T (18b) which is made from the important dyestuff iatermediate nitro-l,2,4-acid, 4-amiQO-3-hydroxy-7-nitro-l-naphthalenesulfonic acid [6259-63-8]. Eriochrome Red B [3618-63-1] (49) (Cl Mordant Red 7 Cl 18760) (1, 2,4-acid — l-phenyl-3-methyl-5-pyrazolone) is another example. The equiUbrium of the two tautomeric forms depends on the nature of the solvent. [Pg.437]

Cyclohexanone purity is most readily deteanined by gas-Hquid chromatography over DC-710 or carbowax 20M-on-chromosorb. Impurities such as cyclohexane, ben2ene, cyclohexanol, and phenol do not interfere. In the absence of other carbonyl compounds cyclohexanone may be deterrnined by treatment with hydroxylamine hydrochloride, which forms the oxime, as follows ... [Pg.427]

The relative basicity of carbonyl oxygen atoms can be measured by studying strength of hydrogen bonding between the carbonyl compound and a hydrogen donor such as phenol. In carbon tetrachloride, values of for 1 1 complex formation for the compounds shown have been measured. Rationalize the observed order of basicity. [Pg.545]

C-coupling is of outstanding importance in the azo coupling reaction for the synthesis of azo dyes and pigments. An aromatic or heteroaromatic diazonium ion reacts with the so-called coupling component, which can be an aromatic primary, secondary, or tertiary amine, a phenol, an enol of an open-chain, aromatic, or heteroaromatic carbonyl compound, or an activated methylene compound. These reactions at an sp2-hybridized carbon atom will be discussed in Chapter 12. In the... [Pg.127]

In azo couplings with carbonyl compounds, three tautomeric products are possible, compared with only two for phenols and aromatic amines (discussed in Section 12.1). The ketohydrazone 12.75 is most often dominant, but for easily enolizable 1,3-dicarbonyl compounds (X=CO-R and similar structures) the azoenol 12.76 is the major product. The azoketone 12.77 is often postulated as primary product, but has rarely been identified in an unambiguous fashion using modern methods. The CH2 group should be easily detectable in the lH NMR spectrum. [Pg.334]

The use of enol- and phenol-esters in cross-coupling reactions is a valuable protocol, as it gives an indirect way to involve readily available phenols and carbonyl compounds as the electrophilic components of cross-couplings (Equation (22)) ... [Pg.336]

Benzoquinones can also serve as carbonyl compounds in this reaction. The deriving spirooxetanes can be converted to phenols (4.80)494). [Pg.67]

Vardanyan [65,66] discovered the phenomenon of CL in the reaction of peroxyl radicals with the aminyl radical. In the process of liquid-phase oxidation, CL results from the disproportionation reactions of primary and secondary peroxyl radicals, giving rise to trip-let-excited carbonyl compounds (see Chapter 2). The addition of an inhibitor reduces the concentration of peroxyl radicals and, hence, the rate of R02 disproportionation and the intensity of CL. As the inhibitor is consumed in the oxidized hydrocarbon the initial level of CL is recovered. On the other hand, the addition of primary and secondary aromatic amines to chlorobenzene containing some amounts of alcohols, esters, ethers, or water enhances the CL by 1.5 to 7 times [66]. This effect is probably due to the reaction of peroxyl radicals with the aminyl radical, since the addition of phenol to the reaction mixture under these conditions must extinguish CL. Indeed, the fast exchange reaction... [Pg.533]

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

Abstract The basic principles of the oxidative carbonylation reaction together with its synthetic applications are reviewed. In the first section, an overview of oxidative carbonylation is presented, and the general mechanisms followed by different substrates (alkenes, dienes, allenes, alkynes, ketones, ketenes, aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, phenols, amines) leading to a variety of carbonyl compounds are discussed. The second section is focused on processes catalyzed by Pdl2-based systems, and on their ability to promote different kind of oxidative carbonylations under mild conditions to afford important carbonyl derivatives with high selectivity and efficiency. In particular, the recent developments towards the one-step synthesis of new heterocyclic derivatives are described. [Pg.244]

Oxidative carbonylation is not necessarily associated with C - C bond formation. Indeed, heteroatom carbonylation may occur exclusively, as in the oxidative carbonylation of alcohols or phenols to carbonates, of alcohols and amines to carbamates, of aminoalcohols to cyclic carbamates, and of amines to ureas. All these reactions are of particular significance, in view of the possibility to prepare these very important classes of carbonyl compounds through a phosgene-free approach. These carbonylations are usually carried out in the presence of an appropriate oxidant under catalytic conditions (Eqs. 31-33), and in some cases can be promoted not only by transition metals but also by... [Pg.257]

Alcohols may be prepared (1) by hydration of alkenes (1) in presence of an acid and (11) by hydroboratlon-oxidatlon reaction (2) from carbonyl compounds by (1) catalytic reduction and (11) the action of Grignard reagents. Phenols may be prepared by (1) substitution of (1) halogen atom In haloarenes and (11) sulphonic acid group In aiyl sulphonic acids, by -OH group (2) by hydrolysis of diazonium salts and (3) industrially from cumene. [Pg.74]


See other pages where Carbonyl compounds phenols is mentioned: [Pg.1824]    [Pg.152]    [Pg.1824]    [Pg.152]    [Pg.511]    [Pg.482]    [Pg.495]    [Pg.562]    [Pg.106]    [Pg.228]    [Pg.520]    [Pg.117]    [Pg.446]    [Pg.223]    [Pg.347]    [Pg.186]    [Pg.163]    [Pg.513]    [Pg.80]    [Pg.48]    [Pg.347]   
See also in sourсe #XX -- [ Pg.711 , Pg.712 ]




SEARCH



Phenol compounds

Phenol phenolic compounds

Phenolic compounds

Phenols carbonylation

© 2024 chempedia.info