Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds diastereoselective additions

The RuH2(PPh3)4-catalyzed addition of active methylene compounds can also be applied to conjugate additions to a,/3-unsaturated carbonyl compounds (Michael additions). In 1989, Murahashi reported the first example of the transition metal-catalyzed Michael addition of active methylene compounds [74]. One of the notable advances of this catalytic reaction is that the addition of C-H bonds to a,/3-unsaturat-ed carbonyl compounds give Michael adducts without contamination by the corresponding aldol products (Eq. 9.56) [74]. Recently, Murahashi applied their aldol and Michael addition reactions to a solid-phase synthesis using polymer-supported nitriles (Scheme 9.12) [76]. In this case, four component reactions took place with high diastereoselectivity. [Pg.247]

Alcohols can be obtained from many other classes of compounds such as alkyl halides, amines, al-kenes, epoxides and carbonyl compounds. The addition of nucleophiles to carbonyl compounds is a versatile and convenient methc for the the preparation of alcohols. Regioselective oxirane ring opening of epoxides by nucleophiles is another important route for the synthesis of alcohols. However, stereospe-cific oxirane ring formation is prerequisite to the use of epoxides in organic synthesis. The chemistry of epoxides has been extensively studied in this decade and the development of the diastereoselective oxidations of alkenic alcohols makes epoxy alcohols with definite configurations readily available. Recently developed asymmetric epoxidation of prochiral allylic alcohols allows the enantioselective synthesis of 2,3-epoxy alcohols. [Pg.2]

There has been recent interest in naphtho-fused dithiepines as chiral acyl anion equivalents, particularly since the starting dithiol 128 can be obtained in enan-tiomerically pure form (89TL2575). This is transformed using standard methods into the dithiepine 129, but showed only moderate diastereoselectivity in its addition to carbonyl compounds. On the other hand, as we have seen previously for other systems, formation of the 2-acyl compound 130 and reduction or addition of a Grignard reagent gave the products 131 with much better stereoselectivity (91JOC4467). [Pg.108]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

In most cases of diastereoselective nucleophilic addition reactions where achiral organometallic reagents are added to chiral carbonyl compounds, the chirulity inducing asymmetric center is in close vicinity to the newly created center and cannot be removed without the loss of chirality of either the inducing center or the newly formed center. This type of reaction is very useful in propagating chirality in a molecule from one center to an adjacent one, or in immolative processes. [Pg.99]

Addition reactions of the a-seleno lithium reagent 26 to carbonyl compounds have been undertaken 27. The a-seleno lithium reagents are configurationally labile at — 78 °C 27 28 and, therefore, the diastereoselectivity observed with 26 ( 90 10) does not significantly depend on the nature of the electrophile but rather reflects the thermodynamic ratio of the diastereomeric lithium compounds. [Pg.131]

The addition of the dianion of /j-sulfmylcarboxylic acids to carbonyl compounds leads to the formation of the corresponding hydroxy derivatives which undergo spontaneous eyclization to give y-lactones. It was found that when optically active ( + )-(/ )-3-(4-methylphenylsulfinyl)pro-panoic acid is used for the reaction, the corresponding diastereomeric /i-sulfinyl-y-lactones are formed in a ratio which is dependent on the substituents of the carbonyl component. However, the diastereoselectivity was always moderate. [Pg.662]

Titanium enolates of various carbonyl compounds play an increasingly important role in Mannich-type reactions with different electrophiles. Recently, Liotta and co-workers reported a novel diastereoselective addition of chloro-titanium enolate 80 of iV-acylthiazolidinethione to various types of O-methyl oximes to afford the desired anti-azetines, precursors of a,/3-disubstituted /3-amino carbonyl derivatives 82 (Scheme 32).109... [Pg.420]

Racemic diquinane enone rac-6 was prepared by Piers and Orellana starting from cyclopentenone (Scheme 6) [11]. After the preparation of the heterocuprate from stannane 20, conjugate addition to cyclopentenone in the presence of BF3 Et20 provided carbonyl compound 21. It was expected that conversion of 21 by intramolecular alkylation and subsequent hydrogenation should provide the desired endo-substituted diquinane rac-13. While other hydrogenation methods proved to be rather unselective, reduction in the presence of Wilkinson s catalyst finally resulted in the formation of rac-13 with good facial diastereoselectivity [11]. [Pg.6]

The introduction of umpoled synthons 177 into aldehydes or prochiral ketones leads to the formation of a new stereogenic center. In contrast to the pendant of a-bromo-a-lithio alkenes, an efficient chiral a-lithiated vinyl ether has not been developed so far. Nevertheless, substantial diastereoselectivity is observed in the addition of lithiated vinyl ethers to several chiral carbonyl compounds, in particular cyclic ketones. In these cases, stereocontrol is exhibited by the chirality of the aldehyde or ketone in the sense of substrate-induced stereoselectivity. This is illustrated by the reaction of 1-methoxy-l-lithio ethene 56 with estrone methyl ether, which is attacked by the nucleophilic carbenoid exclusively from the a-face —the typical stereochemical outcome of the nucleophilic addition to H-ketosteroids . Representative examples of various acyclic and cyclic a-lithiated vinyl ethers, generated by deprotonation, and their reactions with electrophiles are given in Table 6. [Pg.885]

One problem in the anti-selective Michael additions of A-metalated azomethine ylides is ready epimerization after the stereoselective carbon-carbon bond formation. The use of the camphor imines of ot-amino esters should work effectively because camphor is a readily available bulky chiral ketone. With the camphor auxiliary, high asymmetric induction as well as complete inhibition of the undesired epimerization is expected. The lithium enolates derived from the camphor imines of ot-amino esters have been used by McIntosh s group for asymmetric alkylations (106-109). Their Michael additions to some a, p-unsaturated carbonyl compounds have now been examined, but no diastereoselectivity has been observed (108). It is also known that the A-pinanylidene-substituted a-amino esters function as excellent Michael donors in asymmetric Michael additions (110). Lithiation of the camphor... [Pg.774]

If a carbonyl compound is present, the classical addition product is obtained unfortunately, with propanoic acid derivatives the addition is not diastereoselective (equation 89). Several intramolecular examples have also been reported183. [Pg.845]

Addition to carbonyl groups. These alkyltitanium(IV) compounds (and related reagents) add readily to both aldehydes and ketones to form alcohols in high yield. Addition to aldehydes is so much faster than addition to ketones that selective addition to an aldehyde is possible. Diastereoselective addition to ketones is a useful feature. Thus the reaction affords an excellent route to the axial alcohol (2). [Pg.271]


See other pages where Carbonyl compounds diastereoselective additions is mentioned: [Pg.465]    [Pg.299]    [Pg.320]    [Pg.22]    [Pg.29]    [Pg.47]    [Pg.50]    [Pg.60]    [Pg.67]    [Pg.75]    [Pg.78]    [Pg.119]    [Pg.137]    [Pg.211]    [Pg.406]    [Pg.452]    [Pg.453]    [Pg.619]    [Pg.627]    [Pg.892]    [Pg.99]    [Pg.247]    [Pg.124]    [Pg.439]    [Pg.439]    [Pg.882]    [Pg.46]    [Pg.72]    [Pg.14]    [Pg.354]    [Pg.43]    [Pg.47]    [Pg.391]    [Pg.563]    [Pg.323]    [Pg.14]   
See also in sourсe #XX -- [ Pg.84 , Pg.85 ]




SEARCH



Carbonyl compounds diastereoselectivity

Carbonyl compounds, addition

Carbonyl diastereoselective

Carbonyl, addition

Carbonylation additive

Diastereoselective addition

© 2024 chempedia.info