Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl diastereoselective

Similarly to alkenes. alkynes also insert. In the reaction of 775 carried out under a CO atmosphere in AcOH, sequential insertions of alkyne, CO. alkene. and CO take place in this order, yielding the keto ester 776[483]. However, the same reaction carried out in THF in the presence of LiCl affords the ketone 777, but not the keto ester[484]. The tricyclic terpenoid hirsutene (779) has been synthesized via the Pd-catalyzed metallo-ene carbonylation reaction of 778 with 85% diastereoselectivity as the key reaction[485], Kainic acid and allo-kainic acid (783) have been synthesized by the intramolecular insertion ol an alkene in 780, followed by carbonylation to give 781 and 782[486],... [Pg.397]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

There are a number of powerful synthetic reactions which join two trigonal carbons to form a CC single bond in a stereocontrolled way under proper reaction conditions. Included in this group are the aldol, Michael, Claisen rearrangement, ene and metalloallyl-carbonyl addition reactions. The corresponding transforms are powerfully stereosimplifying, especially when rendered enantioselective as well as diastereoselective by the use of chiral controller groups. Some examples are listed in Chart 20. [Pg.51]

There has been recent interest in naphtho-fused dithiepines as chiral acyl anion equivalents, particularly since the starting dithiol 128 can be obtained in enan-tiomerically pure form (89TL2575). This is transformed using standard methods into the dithiepine 129, but showed only moderate diastereoselectivity in its addition to carbonyl compounds. On the other hand, as we have seen previously for other systems, formation of the 2-acyl compound 130 and reduction or addition of a Grignard reagent gave the products 131 with much better stereoselectivity (91JOC4467). [Pg.108]

When having an Q ,/3-unsaturated carbonyl moiety, 2(5/7)-furanones are capable of undergoing 1,4-Michael-type additions. It was found that 1,4-addition reactions of thiophenols to the furanones 168,170, and 172 take place at room temperature in the presence of triethylamine to give a quantitative yield of the adducts 169, 171, and 173. Complete diastereoselective Michael-type addition occurred in all cases (Scheme 48) (88T7213). [Pg.137]

For azomethine ylides and carbonyl ylides, the diastereoselectivity is more complex as the presence of an additional chiral center in the product allows for the formation of four diastereomers. Since the few reactions that are described in this chapter of these dipoles give rise to only one diastereomer, this topic will not be mentioned further here [10]. [Pg.217]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

Lewis acids, results in the formation of isopulegol (43) with greater than 98% diastereoselectivity isopulegol (43), wherein all of the ring substituents are equatorially oriented, arises naturally from a chairlike transition state structure in which the C-3 methyl group, the coordinated C-l aldehyde carbonyl, and the A6,7 double bond are all equatorial (see 48). A low-temperature crystallization raises the chemical and enantiomeric purity of isopulegol (43) close to 100%. Finally, hydrogenation of the double bond in 43 completes the synthesis of (-)-menthol (1). [Pg.357]

When a solution of 25 in a 1 1 mixture of methanol and methylene chloride is exposed to periodic acid, the dithiane group is cleaved oxidatively to give, after treatment of the crude product with camphorsulfonic acid (CSA) in methanol, bisacetal 12 as a 2 1 mixture of C-12 anomers in a yield of 80% (Scheme 3). Although the conversion of 12 into 10 could be carried out on the mixture of anomers, it was found to be more convenient to carry each isomer forward separately. When 12 is treated with lithium diethylamide, the methine hydrogen adjacent to the lactone carbonyl is removed as a proton to give an enolate which is then oxidized in a completely diastereoselective fashion with Davis s oxaziridine18 to afford 11. [Pg.459]

The equatorial selectivity observed with organolithium reagents is enhanced in diethyl ether as the reaction solvent by the addition of lithium perchlorate (Table l)12. I3C-NMR studies47 indicate that the formation of a complex between lithium perchlorate and the carbonyl group, which also leads to a dramatic enhancement of the rate of the addition reaction, accounts for the increased diastereoselectivity. [Pg.9]

Similar to cyclohexanones, substituted cyclopentanones also adopt a conformation with the substituents in a sterically favorable position. In the case of 2-substituted cyclopentanones 1 the substituent occupies a pseudoequatorial position and the diastereoselectivity of nucleophilic addition reactions to 1 is determined by the relative importance of the interactions leading to predominant fra s(equatorial) or cw(axial) attack of the nucleophile. When the nucleophile approaches from the cis side, steric interaction with the substituent at C-2 is encountered. On the other hand, according to Felkin, significant torsional strain between the pseudoaxial C-2—H bond and the incipient bond occurs if the nucleophile approaches the carbonyl group from the trans side. [Pg.14]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]


See other pages where Carbonyl diastereoselective is mentioned: [Pg.299]    [Pg.320]    [Pg.113]    [Pg.161]    [Pg.151]    [Pg.154]    [Pg.186]    [Pg.187]    [Pg.196]    [Pg.204]    [Pg.254]    [Pg.294]    [Pg.331]    [Pg.333]    [Pg.496]    [Pg.499]    [Pg.503]    [Pg.538]    [Pg.603]    [Pg.636]    [Pg.645]    [Pg.649]    [Pg.760]    [Pg.761]    [Pg.764]    [Pg.275]    [Pg.9]    [Pg.12]    [Pg.18]    [Pg.18]    [Pg.22]    [Pg.24]    [Pg.28]    [Pg.28]    [Pg.29]    [Pg.37]    [Pg.41]    [Pg.44]    [Pg.46]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Additions to carbonyl groups can be diastereoselective even without rings

Asymmetric carbonyl olefinations diastereoselective

Carbonyl compounds acyclic, diastereoselective reactions

Carbonyl compounds diastereoselective additions

Carbonyl compounds diastereoselective synthesis

Carbonyl compounds diastereoselectivity

Carbonyl reduction diastereoselective

Carbonylation diastereoselective cyclic reactions

Diastereoselection with Chiral Carbonyl Substrates

Diastereoselective reduction of carbonyls

© 2024 chempedia.info