Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds asymmetric synthesis, enantioselectivity

Among the existing methods for the asymmetric synthesis of chiral a-hydroxy carbonyl compounds, the direct enantioselective a-aminoxylation of carbonyl compounds is one of the most important strategies to achieve this purpose. Although its nitrogen versus oxygen electrophihc reactivity in nitroso compounds should be carefully controlled through the election of appropriate catalysts and reaction conditions. [Pg.125]

The existence of ketenes was established over a hundred years ago, and, in recent years, asymmetric synthesis based on [2 + 2] cycloadditions of ketenes with carbonyl compounds to form chiral p-lactones has been achieved with high yields and high stereoselectivities. In 1994, Miyano et al. reported the use of Ca-symmetric bis(sulfonamides) as ligands of trialkylaluminum complexes to promote the asymmetric [2 + 2] cycloaddition of ketenes with aldehydes. The corresponding oxetanones were obtained in good yields and enantioselectivities... [Pg.304]

The hydrogenation of ketones with O or N functions in the a- or / -position is accomplished by several rhodium compounds [46 a, b, e, g, i, j, m, 56], Many of these examples have been applied in the synthesis of biologically active chiral products [59]. One of the first examples was the asymmetric synthesis of pantothenic acid, a member of the B complex vitamins and an important constituent of coenzyme A. Ojima et al. first described this synthesis in 1978, the most significant step being the enantioselective reduction of a cyclic a-keto ester, dihydro-4,4-dimethyl-2,3-furandione, to D-(-)-pantoyl lactone. A rhodium complex derived from [RhCl(COD)]2 and the chiral pyrrolidino diphosphine, (2S,4S)-N-tert-butoxy-carbonyl-4-diphenylphosphino-2-diphenylphosphinomethyl-pyrrolidine ((S, S) -... [Pg.23]

In summary, of the many chiral auxiliaries used in the asymmetric synthesis of carbonyl compounds via imines, those able to form a methoxymethyl-chclated azaenolate show the best enantioselectivities (see Tabic 7). The same is true for valine and im-leucine derivatives which form rigid chelates via their carboxyl groups. In particular, quaternary centers (see Table 6) and a-alkvl-/i-oxo esters arc effectively prepared using these chiral auxiliaries. [Pg.987]

A formal asymmetric nucleophilic addition to carbonyl compounds is achieved by Trost and his co-workers in the allylic alkylation of acylals of alkenals. An excellent enantioselectivity is observed in this alkylation. The starting acylals are easily prepared by the Lewis-acid catalyzed addition of acid anhydrides to aldehydes, by use of Trost s ligand 118 (Scheme 13), where various carbon-centered nucleophiles are available (Scheme l4),101,101a-10lc Asymmetric synthesis of some natural products is achieved according to this procedure. [Pg.91]

Recent developments in enantioselective protonation of enolates and enols have been reviewed, illustrating the reactions utility in asymmetric synthesis of carbonyl compounds with pharmaceutical or other industrial applications.150 Enolate protonation may require use of an auxiliary in stoichiometric amount, but it is typically readily recoverable. In contrast, the chiral reagent is not consumed in protonation of enols, so a catalytic quantity may suffice. Another variant is the protonation of a complex of the enolate and the auxiliary by an achiral proton source. Differentiation of these three possibilities may be difficult, due to reversible proton exchange reactions. [Pg.26]

The asymmetric alkylation of cyclic ketones, imines of glycine esters, and achiral, enolizable carbonyl compounds in the presence of chiral phase-transfer organoca-talysts is an efficient method for the preparation of a broad variety of interesting compounds in the optically active form. The reactions are not only highly efficient, as has been shown impressively by, e.g., the synthesis of enantiomerically pure a-amino acids, but also employ readily available and inexpensive catalysts. This makes enantioselective alkylation via chiral phase-transfer catalysts attractive for large-scale applications also. A broad range of highly efficient chiral phase-transfer catalysts is also available. [Pg.41]

In conclusion, this new organocatalytic direct asymmetric Mannich reaction is an efficient means of obtaining optically active //-amino carbonyl compounds. It is worthy of note that besides the enantioselective process, enantio- and diastereose-lective Mannich reactions can also be performed, which makes synthesis of products bearing one or two stereogenic centers possible. Depending on the type of acceptor or donor, a broad range of products with a completely different substitution pattern can be obtained. The range of these Mannich products comprises classic / -amino ketones and esters as well as carbonyl-functionalized a-amino acids, and -after reduction-y-amino alcohols. [Pg.108]

Several methods promoted by a stoichiometric amount of chiral Lewis acid 38 [51] or chiral Lewis bases 39 [52, 53] and 40 [53] have been developed for enantioselective indium-mediated allylation of aldehydes and ketones by the Loh group. A combination of a chiral trimethylsilyl ether derived from norpseu-doephedrine and allyltrimethylsilane is also convenient for synthesis of enan-tiopure homoallylic alcohols from ketones [54,55]. Asymmetric carbonyl addition by chirally modified allylic metal reagents, to which chiral auxiliaries are covalently bonded, is also an efficient method to obtain enantiomerically enriched homoallylic alcohols and various excellent chiral allylating agents have been developed for example, (lS,2S)-pseudoephedrine- and (lF,2F)-cyclohex-ane-1,2-diamine-derived allylsilanes [56], polymer-supported chiral allylboron reagents [57], and a bisoxazoline-modified chiral allylzinc reagent [58]. An al-lyl transfer reaction from a chiral crotyl donor opened a way to highly enantioselective and a-selective crotylation of aldehydes [59-62]. Enzymatic routes to enantioselective allylation of carbonyl compounds have still not appeared. [Pg.121]

In recent years, many chiral catalysts for the enantioselective synthesis of optical active 1,5-dicarbonyl compounds have been developed, such as chiral crown ethers with potassium salt bases and chiral palladium complexes, including bimetallic systems. Nakajima and coworkers reported on enantioselective Michael reactions of S-keto esters to a,/3-unsaturated carbonyl compounds in the presence of a chiral biquinoline N,N dioxide-scandium complex, which catalyzed the additions in high yields and with enan-tioselectivities up to 84% ee . Kobayashi and coworkers found that the combination of Sc(OTf)3 with the chiral bipyridine ligand 149 (equation 41) was also effective as a chiral catalyst for asymmetric Michael additions of 1,3-dicarbonyl compounds 147 to a,/3-unsaturated ketones 148. The corresponding Michael adducts 150 were obtained in good to high yields with excellent enantiomeric excesses in most cases (Table 10). [Pg.383]

The asymmetric synthesis of a-hydroxymethyl carbonyl compounds is currently the subject of considerable interest because of their versatility as dual-function chiral synthons. There have been no reports of successful enantioselective hydroxymethylations of prochiral metal enolates with formaldehyde because of the instability and small steric size of gaseous formaldehyde. The author and Yamamoto et al. developed the enantioselective alkoxymethylation of silyl enol ethers by introducing suitable carbon-electrophiles in place of the activated-protons of LBA [142]. [Pg.440]


See other pages where Carbonyl compounds asymmetric synthesis, enantioselectivity is mentioned: [Pg.105]    [Pg.270]    [Pg.324]    [Pg.36]    [Pg.4]    [Pg.854]    [Pg.127]    [Pg.106]    [Pg.889]    [Pg.171]    [Pg.563]    [Pg.735]    [Pg.70]    [Pg.546]    [Pg.317]    [Pg.269]    [Pg.81]    [Pg.113]    [Pg.287]    [Pg.406]    [Pg.359]    [Pg.473]    [Pg.357]    [Pg.282]    [Pg.200]    [Pg.120]    [Pg.380]    [Pg.65]    [Pg.1]    [Pg.14]    [Pg.213]    [Pg.407]    [Pg.429]    [Pg.143]    [Pg.162]    [Pg.190]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.3 , Pg.30 ]




SEARCH



Asymmetric enantioselectivity

Asymmetric synthesis carbonyl compounds

Carbonyl compounds asymmetric

Carbonyl compounds enantioselective

Carbonyl compounds synthesis

Carbonylation asymmetric

Carbonyls synthesis

Enantioselective asymmetric synthesis

Synthesis carbonylation

Synthesis enantioselective

Synthesis, asymmetric compounds

© 2024 chempedia.info