Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds enantioselective

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

Catalytic Enantioselective Cycloaddition Reactions of Carbonyl Compounds... [Pg.151]

This chapter will focus on the development of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes (Scheme 4.1) [3]. [Pg.151]

The main strategy for catalytic enantioselective cycloaddition reactions of carbonyl compounds is the use of a chiral Lewis acid catalyst. This approach is probably the most efficient and economic way to effect an enantioselective reaction, because it allows the direct formation of chiral compounds from achiral substrates under mild conditions and requires a sub-stoichiometric amount of chiral material. [Pg.151]

To achieve catalytic enantioselective cycloaddition reactions of carbonyl compounds, coordination of a chiral Lewis acid to the carbonyl functionality is necessary. This coordination activates the substrate and provides the chiral environment that forces the approach of a diene to the substrate from the less sterically hindered face, introducing enantioselectivity into the reaction. [Pg.152]

The catalytic enantioselective cycloaddition reaction of carbonyl compounds with conjugated dienes has been in intensive development in recent years with the main focus on synthetic aspects the number of mechanistic studies has been limited. This chapter will focus on the development and understanding of cycloaddition reactions of carbonyl compounds with chiral Lewis acid catalysts for the preparation of optically active six-membered ring systems. [Pg.152]

Some of the developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds have origin in Diels-Alder chemistry, where many of the catalysts have been applied. This is valid for catalysts which enable monodentate coordination of the carbonyl functionality, such as the chiral aluminum and boron complexes. New chiral catalysts for cycloaddition reactions of carbonyl compounds have, however, also been developed. [Pg.156]

Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

Jacobsen et al. took an important step towards the development of a more general catalytic enantioselective cycloaddition reaction of carbonyl compounds by introducing chiral tridentate Schiff base chromium(III) complexes 15 (Scheme 4.15)... [Pg.163]

The interest in chiral titanium(IV) complexes as catalysts for reactions of carbonyl compounds has, e.g., been the application of BINOL-titanium(IV) complexes for ene reactions [8, 19]. In the field of catalytic enantioselective cycloaddition reactions, methyl glyoxylate 4b reacts with isoprene 5b catalyzed by BINOL-TiX2 20 to give the cycloaddition product 6c and the ene product 7b in 1 4 ratio enantio-selectivity is excellent - 97% ee for the cycloaddition product (Scheme 4.19) [28]. [Pg.165]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

The first reports on enantioselective addition reactions of achiral organometallic reagents, modified by aprotic chiral additives, described the addition of Grignard reagents to prostereogenic carbonyl compounds in the presence of ( + )-(/ ,/J)-2,3-dimethoxybutane (l)4 5, (-)-tetrahydro-2-methylfuran (2)6, (-)-l-[(tetrahydro-2-furanyl)methyl]pyrrolidine (3)7 or (-)-sparteine (4)8. The enantioselectivity, however, was poor (0-22% ee). [Pg.147]

Reagent-controlled enantioselective addition to achiral carbonyl compounds ... [Pg.219]

Reagents of type 1 are the most important and exhibit the highest reactivity towards carbonyl compounds. The reactivity can be further tuned by altering the substitution on titanium. Reagents of type 2 show lower reactivity, but higher selectivities, but have, so far, only been used occasionally (Section 1.3.3.3.8.2.1.2.). Reagents of type 3, derived from chiral alcohols, accomplish efficient enantioselective allyl transfer (Section 1.3.3.3.8.2,3.3.). [Pg.401]

The complexation of achiral metal enolates by chiral additives, e.g., solvents or complexing agents could, in principle, lead to reagent-induced stereoselectivity. In an early investigation, the Reformatsky reaction of ethyl bromoacetate was performed in the presence of the bidentate ligand (—)-sparteine20. The enantioselectivity of this reaction varies over a wide range and depends on the carbonyl Compound, as shown with bcnzaldehyde and acetophenone. [Pg.580]

High enantioselectivities may be reached using the kinetic controlled Michael addition of achiral tin enolates, prepared in situ, to a,/i-unsaturated carbonyl compounds catalyzed by a chiral amine. The presence of trimethylsilyl trifluoromethanesulfonate as an activator is required in these reactions236. Some typical results, using stoichiometric amounts of chiral amine and various enolates are given below. In the case of the l-(melhylthio)-l-[(trimethylsilyl)thio]ethene it is proposed that metal exchange between the tin(II) trifluoromethanesulfonate and the ketene acetal occurs prior to the 1,4-addition237,395. [Pg.985]

The enantioselective 1,4-addition addition of organometaUic reagents to a,p-unsaturated carbonyl compounds, the so-called Michael reaction, provides a powerful method for the synthesis of optically active compounds by carbon-carbon bond formation [129]. Therefore, symmetrical and unsymmetrical MiniPHOS phosphines were used for in situ preparation of copper-catalysts, and employed in an optimization study on Cu(I)-catalyzed Michael reactions of di-ethylzinc to a, -unsaturated ketones (Scheme 31) [29,30]. In most cases, complete conversion and good enantioselectivity were obtained and no 1,2-addition product was detected, showing complete regioselectivity. Of interest, the enantioselectivity observed using Cu(I) directly in place of Cu(II) allowed enhanced enantioselectivity, implying that the chiral environment of the Cu(I) complex produced by in situ reduction of Cu(II) may be less selective than the one with preformed Cu(I). [Pg.36]

Highly enantioselective hydrosilylation of aliphatic and aromatic carbonyl compounds such as acetophenone, methyl phenethyl ketone 1813, or deuterobenz-aldehyde 1815 can be readily achieved with stericaUy hindered silanes such as o-tolyl2SiH2 or phenyl mesityl silane 1810 in the presence of the rhodium-ferrocene catalyst 1811 to give alcohols such as 1812, 1814, and 1816 in high chemical and optical yield [47] (Scheme 12.14). More recently, hydrosilylations of aldehydes... [Pg.268]


See other pages where Carbonyl compounds enantioselective is mentioned: [Pg.143]    [Pg.275]    [Pg.143]    [Pg.1117]    [Pg.1872]    [Pg.39]    [Pg.143]    [Pg.275]    [Pg.143]    [Pg.1117]    [Pg.1872]    [Pg.39]    [Pg.348]    [Pg.151]    [Pg.183]    [Pg.119]    [Pg.152]    [Pg.180]    [Pg.142]    [Pg.152]   
See also in sourсe #XX -- [ Pg.34 , Pg.731 , Pg.732 ]

See also in sourсe #XX -- [ Pg.193 , Pg.196 ]

See also in sourсe #XX -- [ Pg.731 , Pg.732 , Pg.732 ]




SEARCH



Carbonyl compounds asymmetric synthesis, enantioselectivity

Carbonyl compounds enantioselective addition

Carbonyl compounds enantioselective sulfenylation

Enantioselective Addition of Hydride Donors to Carbonyl Compounds

Enantioselective Reduction of Carbonyl Compounds

Enantioselective a-Functionalization of Carbonyl Compounds

Enantioselective a-Halogenation of Carbonyl Compounds

Enantioselectivity reduction, of carbonyl compounds

© 2024 chempedia.info