Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon simple structures

A substantial portion of fhe gas and vapors emitted to the atmosphere in appreciable quantity from anthropogenic sources tends to be relatively simple in chemical structure carbon dioxide, carbon monoxide, sulfur dioxide, and nitric oxide from combustion processes hydrogen sulfide, ammonia, hydrogen chloride, and hydrogen fluoride from industrial processes. The solvents and gasoline fractions that evaporate are alkanes, alkenes, and aromatics with relatively simple structures. In addition, more complex... [Pg.44]

The use of fire retardants in polymers has become more complicated with the realisation that more deaths are probably caused by smoke and toxic combustion products than by fire itself. The suppression of a fire by the use of fire retardants may well result in smouldering and the production of smoke, rather than complete combustion with little smoke evolution. Furthermore, whilst complete combustion of organic materials leads to the formation of simple molecules such as CO2, H2O, N2, SO2 and hydrogen halides, incomplete combustion leads to the production of more complex and noxious materials as well as the simple structured but highly poisonous hydrogen cyanide and carbon monoxide. [Pg.149]

The convenience and usefulness of the concept of resonance in the discussion of chemical problems are so great as to make the disadvantage of the element of arbitrariness of little significance. Also, it must not be forgotten that the element of arbitrariness occurs in essentially the same way in the simple structure theory of organic chemistry as in the theory of resonance — there is the same use of idealized, hypothetical structural elements. In the resonance discussion of the benzene molecule the two Kekule structures have to be described as hypothetical it is not possible to synthesize molecules with one or the other of the two Kekule structures. In the same way, however, the concept of the carbon-carbon single bond is an idealization. The benzene molecule has its own structure, which cannot be exactly composed of structural elements from other molecules. The propane molecule also has its own structure, which cannot be composed of structural elements from other molecules — it is not possible to isolate a portion of the propane molecule, involving parts of two carbon atoms... [Pg.14]

Affected by multiple scattering are, in particular, porous materials with high electron density (e.g., graphite, carbon fibers). The multiple scattering of isotropic two-phase materials is treated by Luzatti [81] based on the Fourier transform theory. Perret and Ruland [31,82] generalize his theory and describe how to quantify the effect. For the simple structural model of Debye and Bueche [17], Ruland and Tompa [83] compute the effect of the inevitable multiple scattering on determined structural parameters of the studied material. [Pg.89]

Besides 3HB, several other HASCL are incorporated into PHAs. This includes 3-hydroxypropionate (3HP),3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), 4-hydroxyvalerate (4HV), and 5-hydroxyvalerate (5HV). With only few exceptions these constituents are only incorporated into PHAs if precursor substrates are provided, and most of these polyesters cannot be synthesized from simple, structurally unrelated carbon sources. [Pg.104]

The experiment is used for solving simple structural problems, for the evaluation of chemical shifts and the determination of the multiplicities of individual carbon signals (including quaternary centres). [Pg.58]

In a review of the motions of guest molecules in hydrates, Davidson (1971) indicated that all molecules between the sizes of argon (3.8 A) and cyclobutanone (6.5 A) can form si and sll hydrates, if the above restrictions of chemical nature are obeyed. Ripmeester and coworkers note that the largest simple structure II former is tetrahydropyran (THP) (C5H10O) with a van der Waals diameter of 6.95 A (Udachin et al., 2002). Closely following THP are m- and p-dioxane and carbon tetrachloride, each with a molecular diameter of 6.8 A (Udachin et al., 2002). Molecules of size between around 7.1 and 9 A can occupy sH, provided that the below shape restrictions are obeyed and a help gas molecule such as methane is included. [Pg.73]

The highest electrical and thermal conductivity are found in the most simple structures, i.e. structures built up of only one element, of elements with similar atomic masses and / or dimensions or structures without impurities. Graphite solely consists of carbon atoms and has a high conductivity, but only in the direction of the parallel layers. Perpendicular to the layers this conductivity is much less. SiC and B4C consist of atoms of roughly similar size and mass. For that reasons vibrations in the crystal lattice are transmitted freely which results in a high thermal conductivity. [Pg.280]

Section 6.5 because of the detailed design information now available. The costing was done in accordance with the recommendations of Mu let, Corripio and Evans (Ref. Al 3). Their method utilizes correlations for the cost of a simple carbon-steel structure. Factors are then applied to account for the cost of other materials, the inclusion of trays, for operating pressure, and for incidentals such as ladders and railings. The cooling circuit was costed on the basis of heat-transfer area using similar correlations. Details of the cost estimation calculations are included in Appendix G.5. [Pg.188]

There was much affinity between Coulson and Barriol, not only because of the many subjects they shared, but also because of their similar way of proceeding and thinking. They both conceded a high value, in many respects, to the determination of dipole moments. Both worked on methane (CH4) and more particularly on the dipole moment of the C-H group, for which Coulson gave a direction when Barriol s simple model could not. [25] It is highly interesting to compare the way how the two authors express themselves to show that experience or physical and chemical evidence had to correct the false inferences or deductions that square in no way with reality the description of the carbon electronic structure fails to account for four equivalent bonds. We have to admit that the C-orbitals that are... [Pg.109]

Aliphatic hydrocarbons such as n-alkanes and n-alkenes have been successfully used to distinguish between algal, bacterial, and terrestrial sources of carbon in estuarine/coastal systems (Yunker et al., 1991, 1993, 1995 Canuel et al., 1997). Saturated aliphatic hydrocarbons are considered to be alkanes (or paraffins) and nonsaturated hydrocarbons which exhibit one or more double bonds are called alkenes (or olefins)—as indicated in the simple structures of hexadecane and 1,3-butadiene, respectively (figure 9.7). It should also be noted that, n-alkanes tend to be odd-numbered as they result from enzymatic decarboxylation of fatty acids. Long-chain n-alkanes (LCH) (e.g., C27, C29, and C31) are generally considered to be terrestrially derived, originating from epicuticular waxes... [Pg.238]

In initiation of oxidation, the important role may also be played by reactive bonds in a polymer. With polyethylene which is the most simple structurally, such reactive sites may be small concentrations of double bonds or more numerous sites of branching of a main chain to side alkyls. Investigation of the oxidation reaction of different types of polyethylene has. however, revealed that the degree of polyethylene branching from 0 to 20 branches for each 1000 carbon atoms of the main chain does not affect the induction period of oxidation [13]. [Pg.195]

One of the great successes of transition metal compounds is Cisplatin. This compound, with a very simple structure (and, incidentally, not even a single carbon atom ), is one of the most successful anticancer dmgs [3]. After its serendipious discovery by B. Rosenberg, Cisplatin quickly gained clinical approval in 1978. It has inspired research efforts into literally thousands of Pt-containing compounds, from which two more have reached world-wide approval (Carboplatin and... [Pg.303]

Many computational studies of the permeation of small gas molecules through polymers have appeared, which were designed to analyze, on an atomic scale, diffusion mechanisms or to calculate the diffusion coefficient and the solubility parameters. Most of these studies have dealt with flexible polymer chains of relatively simple structure such as polyethylene, polypropylene, and poly-(isobutylene) [49,50,51,52,53], There are, however, a few reports on polymers consisting of stiff chains. For example, Mooney and MacElroy [54] studied the diffusion of small molecules in semicrystalline aromatic polymers and Cuthbert et al. [55] have calculated the Henry s law constant for a number of small molecules in polystyrene and studied the effect of box size on the calculated Henry s law constants. Most of these reports are limited to the calculation of solubility coefficients at a single temperature and in the zero-pressure limit. However, there are few reports on the calculation of solubilities at higher pressures, for example the reports by de Pablo et al. [56] on the calculation of solubilities of alkanes in polyethylene, by Abu-Shargh [53] on the calculation of solubility of propene in polypropylene, and by Lim et al. [47] on the sorption of methane and carbon dioxide in amorphous polyetherimide. In the former two cases, the authors have used Gibbs ensemble Monte Carlo method [41,57] to do the calculations, and in the latter case, the authors have used an equation-of-state method to describe the gas phase. [Pg.294]


See other pages where Carbon simple structures is mentioned: [Pg.1]    [Pg.336]    [Pg.8]    [Pg.10]    [Pg.15]    [Pg.107]    [Pg.53]    [Pg.98]    [Pg.50]    [Pg.113]    [Pg.217]    [Pg.98]    [Pg.53]    [Pg.291]    [Pg.91]    [Pg.49]    [Pg.6]    [Pg.29]    [Pg.216]    [Pg.159]    [Pg.433]    [Pg.580]    [Pg.472]    [Pg.440]    [Pg.116]    [Pg.14]    [Pg.435]    [Pg.488]    [Pg.104]    [Pg.2]    [Pg.309]    [Pg.190]    [Pg.22]    [Pg.95]    [Pg.34]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Carbon structure

Carbonate structure

Simple structure

© 2024 chempedia.info