Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon removal from metals

Perhaps the most difficult inherent problem in metal remediation is that metals, although they may be released in the breakdown of a metal-containing compound, are not degradable in the same sense as carbon-based molecules. The metal atom is not the major building block for new cellular components, and while a significant amount of carbon is released to the atmosphere as C02, the metal atom is often not volatilized. Both incorporation into cell mass and volatilization facilitate carbon removal from environmental systems. In contrast, metals, unless removed completely from a system through intervention, will persist indefinitely. [Pg.314]

In order to remove these carbon contaminants, it was proposed to heat Pd/C catalysts at 300 °C and then to cool down to room temperature in He 4%(vol) O2 flow [33]. However, further heating of these samples in H2 again causes contamination of the metal surface with carbon. For Pt/C catalysts, as well as for Pd/C, O2 treatment (160 Torr, 350 °C) also leads to carbon removal from the metal surface [92]. Similar changes in the apparent metal dispersion upon similar treatments were reported in [42] for Pd/C and Pt/C. However, the authors attribute them to the known phenomenon of redispersion of supported metals in the oxygen-containing atmosphere [8,93], although HRTEM was not applied to validate the hypothesis. [Pg.442]

Uses Emulsifier for R.T. solv. degreasing formulations aids in carbon removal from aircraft, diesels, and metal surfaces Properties Soft paste dens. 7.8 Ib/gal 84% cone. [Pg.1904]

Refining Processes. AH the reduction processes yield an impure metal containing some of the minor elements present in the concentrate, eg, cadmium in 2inc, or some elements introduced during the smelting process, eg, carbon in pig iron. These impurities must be removed from the cmde metal in order to meet specifications for use. Refining operations may be classified according to the kind of phases involved in the process, ie, separation of a vapor from a Hquid or soHd, separation of a soHd from a Hquid, or transfer between two Hquid phases. In addition, they may be characterized by whether or not they involve oxidation—reduction reactions. [Pg.169]

Inorganic heavy metals are usually removed from aqueous waste streams by chemical precipitation in various forms (carbonates, hydroxides, sulfide) at different pH values. The solubiUty curves for various metal hydroxides, when they are present alone, are shown in Figure 7. The presence of other metals and complexing agents (ammonia, citric acid, EDTA, etc) strongly affects these solubiUty curves and requires careful evaluation to determine the residual concentration values after treatment (see Table 9) (38,39). [Pg.228]

The second approach, changing the environment, is a widely used, practical method of preventing corrosion. In aqueous systems, there are three ways to effect a change in environment to inhibit corrosion (/) form a protective film of calcium carbonate on the metal surface using the natural calcium and alkalinity in the water, (2) remove the corrosive oxygen from the water, either by mechanical or chemical deaeration, and (3) add corrosion inhibitors. [Pg.268]

One patent describes a continuous process involving an aqueous alkah metal hydroxide, carbon disulfide, and an alcohol (82). The reported reaction time is 0.5—10 min before the mixture is fed to the dryer. The usual residence time is on the order of hours. A study ia the former USSR reported the use of the water—alcohol azeotrope for water removal from isobutyl or isoamyl alcohol and the appropriate alkah hydroxide to form the alkoxide prior to the addition of carbon disulfide (83). [Pg.366]

Oxidation and chlorination of the catalyst are then performed to ensure complete carbon removal, restore the catalyst chloride to its proper level, and maintain full platinum dispersion on the catalyst surface. Typically, the catalyst is oxidized in sufficient oxygen at about 510°C for a period of six hours or more. Sufficient chloride is added, usually as an organic chloride, to restore the chloride content and acid function of the catalyst and to provide redispersion of any platinum agglomeration that may have occurred. The catalyst is then reduced to return the metal components to their active form. This reduction is accompHshed by using a flow of electrolytic hydrogen or recycle gas from another Platforming unit at 400 to 480°C for a period of one to two hours. [Pg.224]

OH- ions combine with ions of some metals to form insoluble metal hydroxides (precipitation). Precipitated metals settle out and thus are removed from the water adsorption, using activated carbon, improves this separation process. Iron is one of many metals which is commonly removed in this way. [Pg.84]

Decarburization results from hydrogen absorption from gas streams at elevated temperatures. In addition to hydrogen blistering, hydrogen can remove carbon from alloys. The particular mechanism depends to a large extent on the properties of other gases present. Removal of carbon causes the metal to lose strength and fail. [Pg.16]

Adsorption, which utilizes the ability of a solid adsorbent to adsorb specific components from a gaseous or a liquid solution onto its surface. Examples of adsorption include the use of granular activated carbon for the removal of ben-zene/toluene/xylene mixtures from underground water, the separation of ketones from aqueous wastes of an oil refinery, aad the recovery of organic solvents from the exhaust gases of polymer manufacturing facilities. Other examples include the use of activated alumina to adsorb fluorides and arsenic from metal-finishing emissions. [Pg.17]

Precipitation involves the alteration of the ionic equilibrium to produce insoluble precipitates. To remove the sediment, chemical precipitation is allied with solids separation processes such as filtration. Undesirable metal ions and anions are commonly removed from waste streams by converting them to an insoluble form. The process is sometimes preceded by chemical reduction of the metal ions to a form that can be precipitated more easily. Chemical equilibrium can be affected by a variety of means to change the solubility of certain compounds. For e.xample, precipitation can be induced by alkaline agents, sulfides, sulfates, and carbonates. Precipitation with chemicals is a common waste stream treatment process and is effective and reliable. The treatment of sludges is covered next. [Pg.151]

Table IV presents the results of the determination of polyethylene radioactivity after the decomposition of the active bonds in one-component catalysts by methanol, labeled in different positions. In the case of TiCU (169) and the catalyst Cr -CjHsU/SiCU (8, 140) in the initial state the insertion of tritium of the alcohol hydroxyl group into the polymer corresponds to the expected polarization of the metal-carbon bond determined by the difference in electronegativity of these elements. The decomposition of active bonds in this case seems to follow the scheme (25) (see Section V). But in the case of the chromium oxide catalyst and the catalyst obtained by hydrogen reduction of the supported chromium ir-allyl complexes (ir-allyl ligands being removed from the active center) (140) C14 of the... Table IV presents the results of the determination of polyethylene radioactivity after the decomposition of the active bonds in one-component catalysts by methanol, labeled in different positions. In the case of TiCU (169) and the catalyst Cr -CjHsU/SiCU (8, 140) in the initial state the insertion of tritium of the alcohol hydroxyl group into the polymer corresponds to the expected polarization of the metal-carbon bond determined by the difference in electronegativity of these elements. The decomposition of active bonds in this case seems to follow the scheme (25) (see Section V). But in the case of the chromium oxide catalyst and the catalyst obtained by hydrogen reduction of the supported chromium ir-allyl complexes (ir-allyl ligands being removed from the active center) (140) C14 of the...
The pentafluorophenylcopper tetramer is usually analytically pure as isolated and melts at 200° with decomposition. If any significant decomposition occurs during the final drying, the product can be purified by dissolution in ether, filtration to remove copper metal, and precipitation by addition of hexane. It can also be recrystallized from benzene. When kept in a sealed container under nitrogen at room temperature, pentafluorophenyl copper tetramer appears to be stable for reasonable periods. It can be stored indefinitely at -78° under an atmosphere of carbon dioxide. [Pg.64]

The oxidation of CO at low temperatures was the first reaction discovered as an example of the highly active catalysis by gold [1]. Carbon monoxide is a very toxic gas and its concentration in indoor air is regulated to 10-50 ppm depending on the conditions [61]. An important point is that CO is the only gas that cannot be removed from indoor air by gas adsorption with activated carbon. On the other hand, metal oxides or noble metal catalysts can oxidize CO at room temperature. [Pg.66]

C18-0115. One way to remove heavy metal ions from water is by treatment with sodium carbonate. Calculate the mass of the precipitate that will form and the concentration of remaining in solution after 0.750... [Pg.1343]


See other pages where Carbon removal from metals is mentioned: [Pg.509]    [Pg.422]    [Pg.3407]    [Pg.161]    [Pg.3406]    [Pg.255]    [Pg.445]    [Pg.222]    [Pg.276]    [Pg.125]    [Pg.478]    [Pg.523]    [Pg.317]    [Pg.496]    [Pg.139]    [Pg.376]    [Pg.430]    [Pg.196]    [Pg.67]    [Pg.225]    [Pg.242]    [Pg.249]    [Pg.2228]    [Pg.55]    [Pg.160]    [Pg.25]    [Pg.20]    [Pg.1361]    [Pg.1115]    [Pg.348]    [Pg.778]    [Pg.94]    [Pg.384]    [Pg.255]   
See also in sourсe #XX -- [ Pg.181 , Pg.182 ]




SEARCH



Carbonate removal

Metals removal

© 2024 chempedia.info