Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon nucleophiles acetate

The intramolecular allylation of soft carbon nucleophiles with allylic acetates as a good cyclization method has been extensively applied to syntheses of various three, four, five and six-membered rings, and medium and macrocyclic compounds[44]. Only a few typical examples of the cyclizations are treated among numerous applications. [Pg.299]

The allyl-substituted cyclopentadiene 122 was prepared by the reaction of cyclopentadiene anion with allylic acetates[83], Allyl chloride reacts with carbon nucleophiles without Pd catalyst, but sometimes Pd catalyst accelerates the reaction of allylic chlorides and gives higher selectivity. As an example, allylation of the anion of 6,6-dimethylfulvene 123 with allyl chloride proceeded regioselectively at the methyl group, yielding 124[84]. The uncatalyzed reaction was not selective. [Pg.308]

The reaction of 2,3-butadienyl acetate (843) with soft carbon nucleophiles such as dimethyl malonate gives dimethyl 2,3-butadienylmalonate (844)[520]. On the other hand, the reaction of the 2,3-butadienyl phosphate 845 with hard carbon nucleophiles such as Mg and Zn reagents affords the 2-allcyl-1,3-butadiene 846[520,521]. The 3-methoxy-1,3-butadiene 848 is obtained by the reaction of the 2-methoxy-2,3-butadienyl carbonate 847 with organozinc reagent. [Pg.405]

No reaction of soft carbon nucleophiles takes place with propargylic acet-ates[37], but soft carbon nucleophiles, such as / -keto esters and malonates, react with propargylic carbonates under neutral conditions using dppe as a ligand. The carbon nucleophile attacks the central carbon of the cr-allenylpal-ladium complex 81 to form the rr-allylpalladium complex 82, which reacts further with the carbon nucleophile to give the alkene 83. Thus two molecules of the a-monosubstituted /3-keto ester 84, which has one active proton, are... [Pg.465]

One route to o-nitrobenzyl ketones is by acylation of carbon nucleophiles by o-nitrophenylacetyl chloride. This reaction has been applied to such nucleophiles as diethyl malonatc[l], methyl acetoacetate[2], Meldrum s acid[3] and enamines[4]. The procedure given below for ethyl indole-2-acetate is a good example of this methodology. Acylation of u-nitrobenzyl anions, as illustrated by the reaction with diethyl oxalate in the classic Reissert procedure for preparing indolc-2-carboxylate esters[5], is another route to o-nitrobenzyl ketones. The o-nitrophenyl enamines generated in the first step of the Leimgruber-Batcho synthesis (see Section 2.1) are also potential substrates for C-acylation[6,7], Deformylation and reduction leads to 2-sub-stituted indoles. [Pg.14]

Chiral acetals/ketals derived from either (R,R)- or (5,5 )-pentanediol have been shown to offer considerable advantages in the synthesis of secondary alcohols with high enantiomeric purity. The reaction of these acetals with a wide variety of carbon nucleophiles in the presence of a Lewis acid results in a highly diastereoselective cleavage of the acetal C-0 bond to give a /1-hydroxy ether, and the desired alcohols can then be obtained by subsequent degradation through simple oxidation elimination. Scheme 2-39 is an example in which H is used as a nucleophile.97... [Pg.105]

Ring opening reaction of alkylidenecyclopropanone acetals readily proceeds in the presence of Lewis or Bransted acids to produce l-alkylidene-2-oxyallyl cation, which is provided for the reaction with nucleophiles such as chloride, alcohols, siloxyalkenes, and furans. The reaction of this cation with the carbon nucleophiles gives products of [4 + 3] and [3 + 2] cycloaddition as well as those of nucleophilic addition. The modes of addition reactions are controlled by the oxy group of the cation and by the reaction conditions including solvent. [Pg.101]

We have recently developed a novel method for the generation of alkylideneallyl cations from alkylidenecyclopropanone acetals (8, 9). This method provides a nice opportunity to examine the selectivity of reactions of the ambident cation with various nucleophiles including siloxyalkenes (10) and furans (11). The reaction of the cation with the carbon nucleophiles gives [4 + 3] and [3 + 2] cycloaddition products as well as simple nucleophilic addition products. These results are summarized in this chapter. [Pg.102]

Various carbon nucleophiles, such as allylsilanes, allylstannanes, silyl enol ethers, ketene silyl acetals, organoaluminum compounds, and Grignard reagents were effective as carbon nucleophiles. [Pg.206]

Alkoxycarbenium ions are important reactive intermediates in modem organic synthesis.28 It should be noted that other names such as oxonium ions, oxocarbenium ions, and carboxonium ions have also been used for carbocations stabilized by an adjacent oxygen atom and that we often draw structures having a carbon-oxygen double bond for this type of cations.2 Alkoxycarbenium ions are often generated from the corresponding acetals by treatment with Lewis acids in the presence of carbon nucleophiles. This type of reaction serves as efficient methods for carbon-carbon bond formation. [Pg.213]

Lewis acid-acetal complexes in NMR studies, but never detected alkoxycarbenium ions.29 The absence of alkoxycarbenium ions in the spectra, however, does not necessarily rule out their intermediacy in the reactions with nucleophiles. Therefore, it was imperative to accomplish the reactions of spectroscopically characterized, nonstabilized alkoxycarbenium ions with carbon nucleophiles. The cation pool method made it possible and opened a new chapter in the chemistry of alkoxycarbenium ions. [Pg.214]

The alkoxycarbenium ions generated by the cation pool method react with various carbon nucleophiles such as substituted allylsilanes and enol silyl ethers to give the corresponding coupling products in good yields. It should be noted that the reactions of alkoxycarbenium ion pools with such nucleophiles are much faster than the Lewis acid promoted reactions of acetals with similar nucleophiles. A higher concentration of the cationic species in the cation pool method seems to be responsible. [Pg.215]

A variety of other carbon nucleophiles have been alkylated with alcohols including malonate esters, nitroaUcanes, ketonitriles [119, 120], barbituric acid [121], cyanoesters [122], arylacetonitriles [123], 4-hydroxycoumarins [124], oxi-ndoles [125], methylpyrimidines [126], indoles [127], and esters [128]. Selected examples are given in Scheme 35. Thus, benzyl alcohol 15 could be alkylated with nitroethane 147, 1,3-dimethylbarbituric acid 148, phenylacetonitrile 149, methyl-pyrimidine 150, and even f-butyl acetate 151 to give the corresponding alkylated products 152-156. [Pg.102]

Reactions of allylic electrophiles with stabilized carbon nucleophiles were shown by Helmchen and coworkers to occur in the presence of iridium-phosphoramidite catalysts containing LI (Scheme 10) [66,69], but alkylations of linear allylic acetates with salts of dimethylmalonate occurred with variable yield, branched-to-linear selectivity, and enantioselectivity. Although selectivities were improved by the addition of lithium chloride, enantioselectivities still ranged from 82-94%, and branched selectivities from 55-91%. Reactions catalyzed by complexes of phosphoramidite ligands derived from primary amines resulted in the formation of alkylation products with higher branched-to-linear ratios but lower enantioselectivities. These selectivities were improved by the development of metalacyclic iridium catalysts discussed in the next section and salt-free reaction conditions described later in this chapter. [Pg.183]

Next to iodine there is also another class of neutral Lewis acids known. Tetracyanoethylene, dicyanoketene acetals and derivatives can catalyse reaction due to their tt-Lewis acid properties. They promoted the alcoholysis of epoxides [238], tetrahydropyranylation of alcohols [239], monothioacetahzation of acetals [240], and carbon-carbon bond formation of acetals [241,242] and imines [243] with silylated carbon nucleophiles. [Pg.388]

The Michael additions of various carbon nucleophiles such as cyanide [15b, 22b], anions generated from nitromethane [27], ferf-butyl acetate [9], malon-ates [27] and O Donnell s glycine equivalent [541, cuprates [9,15b] or Grignard reagents [53] under copper catalysis [55] have also been reported (Scheme 24). [Pg.171]

The intramolecular addition of carbon nucleophiles to alkenes has received comparatively little attention relative to heterocyclization reactions. The first examples of Pd-catalyzed oxidative carbocyclization reactions were described by Backvall and coworkers [164-166]. Conjugaled dienes with appended al-lyl silane and stabilized carbanion nucleophiles undergo 1,4-carbochlorination (Eq. 36) and carboacetoxylation (Eq. 37), respectively. The former reaction employs BQ as the stoichiometric oxidant, whereas the latter uses O2. The authors do not describe efforts to use molecular oxygen in the reaction with allyl silanes however, BQ was cited as being imsuccessful in the reaction with stabihzed car-banions. Benzoquinone is known to activate Ti-allyl-Pd intermediates toward nucleophilic attack (see below. Sect. 4.4). In the absence of BQ, -hydride eUm-ination occurs to form diene 43 in competition with attack of acetate on the intermediate jr-allyl-Pd" species to form the 1,4-addition product 44. [Pg.100]


See other pages where Carbon nucleophiles acetate is mentioned: [Pg.62]    [Pg.157]    [Pg.295]    [Pg.304]    [Pg.310]    [Pg.321]    [Pg.454]    [Pg.464]    [Pg.301]    [Pg.538]    [Pg.646]    [Pg.328]    [Pg.300]    [Pg.862]    [Pg.286]    [Pg.555]    [Pg.243]    [Pg.286]    [Pg.78]    [Pg.357]    [Pg.41]    [Pg.148]    [Pg.215]    [Pg.38]    [Pg.159]    [Pg.162]    [Pg.234]    [Pg.239]    [Pg.366]    [Pg.435]    [Pg.448]   
See also in sourсe #XX -- [ Pg.466 ]




SEARCH



Acetates carbon nucleophilic

Acetates carbon nucleophilic

Carbon acetates

Carbon nucleophile

Carbon nucleophiles

© 2024 chempedia.info