Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals Lewis acids

Lewis acid promoted condensation of silyl ketene acetals (ester enolate equiv.) with aldehydes proceeds via "open" transition state to give anti aldols starting from either E- or Z- enolates. [Pg.86]

Mukaiyarna-Johnson AJdoJ- Lewis acid promoted condensation of silyl enol ethers with acetals ... [Pg.87]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

Another category Ic indole synthesis involves cyclization of a-anilino aldehydes or ketones under the influence of protonic or Lewis acids. This corresponds to retro.synthetic path d in Scheme 4.1. Considerable work on such reactions was done in the early 1960s by Julia and co-workers. The most successful examples involved alkylation of anilines with y-haloacetoacetic esters or amides. For example, heating IV-substituted anilines with ethyl 4-bromoacetoacetate followed by cyclization w ith ZnClj gave indole-3-acetate esterfi]. Additional examples are given in Table 4.3. [Pg.41]

With Lewis acids as catalysts, compounds containing more than one alkoxy group on a carbon atom add across vinyl ether double bonds. Acetals give 3-alkoxyacetals since the products are also acetals, they can react further with excess vinyl ether to give oligomers (228—230). Orthoformic esters give diacetals of malonaldehyde (231). With Lewis acids and mercuric salts as catalysts, vinyl ethers add in similar fashion to give acetals of 3-butenal (232,233). [Pg.115]

PhenoHc resins are prepared with strong acid or alkaline catalysts. Occasionally, weak or Lewis acids, such as zinc acetate, are used for specialty resins. [Pg.293]

More useful than the preceding methods is cleavage of alkoxides by acetyl chloride or bromide. One, two, three, or four alkoxyls can be replaced by chloride or bromide. Benzoyl chloride gives poor yields, however. The tri- and tetrachlorides, which are stronger Lewis acids than mono- and dichlorides, coordinate with the alkyl acetate formed and yield distillable complexes (46,55,56). [Pg.144]

Spectroscopic methods such as uv and fluorescence have rehed on the polyene chromophore of vitamin A as a basis for analysis. Indirectly, the classical Carr-Price colorimetric test also exploits this feature and measures the amount of a transient blue complex at 620 nm which is formed when vitamin A is dehydrated in the presence of Lewis acids. For uv measurements of retinol, retinyl acetate, and retinyl palmitate, analysis is done at 325 nm. More sensitive measurements can be obtained by fluorescence. Excitation is done at 325 nm and emission at 470 nm. Although useful, all of these methods suffer from the fact that the method is not specific and any compound which has spectral characteristics similar to vitamin A will assay like the vitamin... [Pg.102]

Beecham P-lactamase iiihibitoi BRL 42715 [102209-75-6] (89, R = Na), C IlgN O SNa (105). Lithium diphenylamide, a weaker base, was used to generate the anion of (88) which on sequential treatment with l-methyl-l,2,3-ttia2ole-4-carbaldehyde and acetic anhydride gives a mixture of diastereomers of the bromoacetate (90). Reductive elimination then provided the (Z)-penem (89, R = d5 Q [ OC15 -p) as major product which on Lewis acid mediated deprotection gave BRL 42715 (89, R = Na). [Pg.14]

Acetalation. As polyhydroxy compounds, carbohydrates react with aldehydes and ketones to form cycHc acetals (1,13). Examples are the reaction of D-glucose with acetone and a protic or Lewis acid catalyst to form l,2 5,6-di-0-isoprop5lidene-a-D-glucofuranose [582-52-5] and its reaction with benzaldehyde to form 4,6-0-benzyhdene-D-glucopyranose [25152-90-3]. The 4,6-0-(l-carboxyethyhdine) group (related to pymvic acid) occurs naturally in some polysaccharides. [Pg.481]

Zinc chloride is a Lewis acid catalyst that promotes cellulose esterification. However, because of the large quantities required, this type of catalyst would be uneconomical for commercial use. Other compounds such as titanium alkoxides, eg, tetrabutoxytitanium (80), sulfate salts containing cadmium, aluminum, and ammonium ions (81), sulfamic acid, and ammonium sulfate (82) have been reported as catalysts for cellulose acetate production. In general, they require reaction temperatures above 50°C for complete esterification. Relatively small amounts (<0.5%) of sulfuric acid combined with phosphoric acid (83), sulfonic acids, eg, methanesulfonic, or alkyl phosphites (84) have been reported as good acetylation catalysts, especially at reaction temperatures above 90°C. [Pg.253]

Aromatic Ring Reactions. In the presence of an iodine catalyst chlorination of benzyl chloride yields a mixture consisting mostly of the ortho and para compounds. With strong Lewis acid catalysts such as ferric chloride, chlorination is accompanied by self-condensation. Nitration of benzyl chloride with nitric acid in acetic anhydride gives an isomeric mixture containing about 33% ortho, 15% meta, and 52% para isomers (27) with benzal chloride, a mixture containing 23% ortho, 34% meta, and 43% para nitrobenzal chlorides is obtained. [Pg.59]

Resoles are usually those phenolics made under alkaline conditions with an excess of aldehyde. The name denotes a phenol alcohol, which is the dominant species in most resoles. The most common catalyst is sodium hydroxide, though lithium, potassium, magnesium, calcium, strontium, and barium hydroxides or oxides are also frequently used. Amine catalysis is also common. Occasionally, a Lewis acid salt, such as zinc acetate or tin chloride will be used to achieve some special property. Due to inclusion of excess aldehyde, resoles are capable of curing without addition of methylene donors. Although cure accelerators are available, it is common to cure resoles by application of heat alone. [Pg.874]

Recently, in extending the reaction to aliphatic glycols, Ghera observed that p-nitrobenzoate esters gave better results than acetates, and that zinc acetate could be substituted for activated zinc. He has proposed that the rearrangement is a heterogeneous catalytic process, with the zinc acting as a Lewis acid ... [Pg.169]

The Lewis acid-catalyzed addition of silyl kelene acetals occurred m high yield, and when the ketene acetal bore a substituent, the reactions occurred with modest diastereofacial selectivity [d] (equation 7) (Table 3)... [Pg.617]


See other pages where Acetals Lewis acids is mentioned: [Pg.50]    [Pg.1496]    [Pg.531]    [Pg.531]    [Pg.770]    [Pg.152]    [Pg.23]    [Pg.531]    [Pg.379]    [Pg.50]    [Pg.1496]    [Pg.531]    [Pg.531]    [Pg.770]    [Pg.152]    [Pg.23]    [Pg.531]    [Pg.379]    [Pg.58]    [Pg.325]    [Pg.529]    [Pg.55]    [Pg.115]    [Pg.209]    [Pg.352]    [Pg.383]    [Pg.397]    [Pg.76]    [Pg.89]    [Pg.235]   
See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Acetals Lewis acid induced

Acetals Lewis acid mediated

Acetals Lewis acid promotion

Acetals reaction with Lewis acids

Acetic acid Lewis acids

Acetic acid Lewis acids

Acetic acid Lewis structure

Benzylic acetals Lewis acid activated

Chiral a-amino acetals Lewis acid-mediated reaction

Lewis acid, amide acetal cyclization

Lewis acids copper acetate

Lewis acids cyclic acetals

Lewis acids reaction with cyclic acetals

Silyl ketene acetals Lewis acid mediated

Silyl ketene acetals, Lewis-acid-promoted

© 2024 chempedia.info