Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon nanotubes measurements

Fig. 16.15 (a) TERS intensity of carbon nanotubes measured while scanning one of two gates through the entire tapping oscillation (filled square a vibrational frequency of the G-band at 1,595 cm open square no vibrational frequency at 850 cm ). (b) Distance dependence of TERS intensity of the G-band derived from (a). The delay time is converted to tip-sample distance by taking into account the harmonic oscillation of the tip (Reprinted from [66], Copyright 2007, with permission from American Institute of Physics)... [Pg.469]

The earliest observations of carbon nanotubes with very small (nanometer) diameters [151, 158, 159] are shown in Fig. 14. Here we see results of high resolution transmission electron microscopy (TEM) measurements, providing evidence for m-long multi-layer carbon nanotubes, with cross-sections showing several concentric coaxial nanotubes and a hollow core. One nanotube has... [Pg.62]

Experimental measurements to test the remarkable theoretical predictions of the electronic structure of carbon nanotubes are difficult to carry out because... [Pg.72]

Early transport measurements on individual multi-wall nanotubes [187] were carried out on nanotubes with too large an outer diameter to be sensitive to ID quantum effects. Furthermore, contributions from the inner constituent shells which may not make electrical contact with the current source complicate the interpretation of the transport results, and in some cases the measurements were not made at low enough temperatures to be sensitive to 1D effects. Early transport measurements on multiple ropes (arrays) of single-wall armchair carbon nanotubes [188], addressed general issues such as the temperature dependence of the resistivity of nanotube bundles, each containing many single-wall nanotubes with a distribution of diameters d/ and chiral angles 6. Their results confirmed the theoretical prediction that many of the individual nanotubes are metallic. [Pg.75]

These properties are illustrative of the unique behavior of ID systems on a rolled surface and result from the group symmetry outlined in this paper. Observation of ID quantum effects in carbon nanotubes requires study of tubules of sufficiently small diameter to exhibit measurable quantum effects and, ideally, the measurements should be made on single nanotubes, characterized for their diameter and chirality. Interesting effects can be observed in carbon nanotubes for diameters in the range 1-20 nm, depending... [Pg.34]

Carbon nanotubes were first thought of as perfeet seamless eylindrieal graphene sheets —a defeet-free strueture. However, with time and as more studies have been undertaken, it is elear that nanotubes are not neeessarily that perfeet this issue is not simple bc-eause of a variety of seemingly eontradictory observations. The issue is further eomplicated by the faet that the quality of a nanotube sample depends very mueh on the type of maehine used to prepare it[l]. Although nanotubes have been available in large quantities sinee 1992[2], it is only recently that a purification method was found[3]. So, it is now possible to undertake various accurate property measurements of nanotubes. However, for those measurements to be meaningful, the presence and role of defeets must be elearly understood. [Pg.71]

Experimental measurements to test these remarkable theoretical predictions of the electronic structure of carbon nanotubes are difficult to carry out because of the strong dependence of the predicted properties on tubule diameter and chirality. Ideally, electronic or optical measurements should be made on individual single-wall nanotubes that have been characterized with regard to diameter and chiral angle. Further ex-... [Pg.121]

The first report of current-voltage (I-V) measurements by Zhang and Lieber[I0] suggested a gap in the density of states below about 200 MeV and semiconducting behavior in the smallest of their nanotubes (6 nm diameter). The study that provides the most detailed test of the theory for the electronic properties of the ID carbon nanotubes, thus far, is the combined STM/STS study by Oik and Heremans[l 1], even though it is still preliminary. In this study, more than nine... [Pg.121]

Song et al. [16] reported results relative to a four-point resistivity measurement on a large bundle of carbon nanotubes (60 um diameter and 350 tm in length between the two potential contacts). They explained their resistivity, magnetoresistance, and Hall effect results in terms of a conductor that could be modeled as a semimetal. Figures 4 (a) and (b) show the magnetic field dependence they observed on the high- and low-temperature MR, respectively. [Pg.123]

The yield strengths of defect-free SWNTs may be higher than that measured for Bacon s scroll structures, and measurements on defect-free carbon nanotubes may allow the prediction of the yield strength of a single, defect-free graphene sheet. Also, the yield strengths of MWNTs are subject to the same limitations discussed above with respect to tube slippage. All the discussion here relates to ideal nanotubes real carbon nanotubes may contain faults of various types that will influence their properties and require experimental measurements of their mechanical constants. [Pg.144]

Because direct calculation of thermal conductivity is difficulty 1], experimental measurements on composites with nanotubes aligned in the matrix could be a first step for addressing the thermal conductivity of carbon nanotubes. High on-axis thermal conductivities for CCVD high-temperature treated carbon fibers have been obtained, but have not reached the in-plane thermal conductivity of graphite (ref. [3], Fig. 5.11, p. 115). We expect that the radial thermal conductivity in MWNTs will be very low, perhaps even lower than the c-axis thermal conductivity of graphite. [Pg.147]

Electronic Properties of Carbon Nanotubes Probed by Magnetic Measurements... [Pg.76]

The force effect is applicable to investigation of the mechanical properties of nanomaterials [28, 29]. We measured TERS spectra of a single wall carbon nanotube (SWCNT) bundle with a metallic tip pressing a SWCNT bundle [28]. Figure 2.13a-e show the Raman spectra of the bundle measured in situ while gradually applying a force up to 2.4 nN by the silver-coated AFM tip. Raman peaks of the radial breathing... [Pg.35]

Maehashi et al. (2007) used pyrene adsorption to make carbon nanotubes labeled with DNA aptamers and incorporated them into a field effect transistor constructed to produce a label-free biosensor. The biosensor could measure the concentration of IgE in samples down to 250 pM, as the antibody molecules bound to the aptamers on the nanotubes. Felekis and Tagmatarchis (2005) used a positively charged pyrene compound to prepare water-soluble SWNTs and then electrostatically adsorb porphyrin rings to study electron transfer interactions. Pyrene derivatives also have been used successfully to add a chromophore to carbon nanotubes using covalent coupling to an oxidized SWNT (Alvaro et al., 2004). In this case, the pyrene ring structure was not used to adsorb directly to the nanotube surface, but a side-chain functional group was used to link it covalently to modified SWNTs. [Pg.645]

S.B. Cronin, R. Barnett, M. Tinkham, S.G. Chou, O. Rabin, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, and B.B. Goldberg, Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy. Appl. Phys. Lett. 84, 2052—2054 (2004). [Pg.523]


See other pages where Carbon nanotubes measurements is mentioned: [Pg.161]    [Pg.161]    [Pg.64]    [Pg.65]    [Pg.66]    [Pg.73]    [Pg.73]    [Pg.73]    [Pg.75]    [Pg.75]    [Pg.76]    [Pg.76]    [Pg.113]    [Pg.121]    [Pg.123]    [Pg.127]    [Pg.143]    [Pg.144]    [Pg.193]    [Pg.728]    [Pg.43]    [Pg.203]    [Pg.749]    [Pg.603]    [Pg.257]    [Pg.53]    [Pg.57]    [Pg.273]    [Pg.60]    [Pg.378]    [Pg.382]    [Pg.491]    [Pg.507]    [Pg.534]    [Pg.587]   
See also in sourсe #XX -- [ Pg.669 ]




SEARCH



Carbonation: measurement

© 2024 chempedia.info