Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide platinum

Colloidal metals are usually prepared by reduction of a salt with a reducing agent, such as phosphorus, acetone, tannin, or carbon monoxide. Platinum metals can also be prepared as finely divided very active blacks by reducing the metal salt in an aqueous solution of sodium or potassium borohydride. [Pg.3]

PGM catalyst technology can also be appHed to the control of emissions from stationary internal combustion engines and gas turbines. Catalysts have been designed to treat carbon monoxide, unbumed hydrocarbons, and nitrogen oxides in the exhaust, which arise as a result of incomplete combustion. To reduce or prevent the formation of NO in the first place, catalytic combustion technology based on platinum or palladium has been developed, which is particularly suitable for appHcation in gas turbines. Environmental legislation enacted in many parts of the world has promoted, and is expected to continue to promote, the use of PGMs in these appHcations. [Pg.173]

Oxidation. Carbon monoxide can be oxidized without a catalyst or at a controlled rate with a catalyst (eq. 4) (26). Carbon monoxide oxidation proceeds explosively if the gases are mixed stoichiometticaHy and then ignited. Surface burning will continue at temperatures above 1173 K, but the reaction is slow below 923 K without a catalyst. HopcaUte, a mixture of manganese and copper oxides, catalyzes carbon monoxide oxidation at room temperature it was used in gas masks during World War I to destroy low levels of carbon monoxide. Catalysts prepared from platinum and palladium are particularly effective for carbon monoxide oxidation at 323 K and at space velocities of 50 to 10, 000 h . Such catalysts are used in catalytic converters on automobiles (27) (see Exhaust CONTHOL, automotive). [Pg.51]

In one patent (31), a filtered, heated mixture of air, methane, and ammonia ia a volume ratio of 5 1 1 was passed over a 90% platinum—10% rhodium gauze catalyst at 200 kPa (2 atm). The unreacted ammonia was absorbed from the off-gas ia a phosphate solution that was subsequently stripped and refined to 90% ammonia—10% water and recycled to the converter. The yield of hydrogen cyanide from ammonia was about 80%. On the basis of these data, the converter off-gas mol % composition can be estimated nitrogen, 49.9% water, 21.7% hydrogen, 13.5% hydrogen cyanide, 8.1% carbon monoxide, 3.7% carbon dioxide, 0.2% methane, 0.6% and ammonia, 2.3%. [Pg.377]

Transition-metal organometallic catalysts in solution are more effective for hydrogenation than are metals such as platinum. They are used for reactions of carbon monoxide with olefins (hydroformyla-tion) and for some ohgomerizations. They are sometimes immobihzed on polymer supports with phosphine groups. [Pg.2094]

Being acidic, fluorocarbon ionomers can tolerate carbon dioxide in the mel and air streams PEFCs, therefore, are compatible with hydrocarbon fuels. However, the platinum catalysts on the fuel and air elec trodes are extremely sensitive to carbon monoxide only a few parts per million are acceptable. Catalysts that are tolerant to carbon monoxide are being explored. Typical polarization curves for PEFCs are shown in Fig. 27-64. [Pg.2412]

Copper or glass-lined equipment for carbonyl in the presence of carbon monoxide Most common metals for dry gas. For moist gas use 18 8 stainless steel, PTFE Any common metal Most common metals for dry gas. For moist gas use 18 8 stainless steel Nickel and Monel are preferred. Steel, copper and glass are acceptable at ordinary temperatures Steel for dry gas otherwise use 18 8 stainless steel Nickel, Monel and Inconel. For moist gas tantalum is suitable Most common metals Cast iron and stainless steel <120°C, steel <175°C, Inconel, nickel and platinum <400°C Most common metals... [Pg.269]

H. P. Kaukonen, R. M. Nieminen. Computer simulations studies of the catalytic oxidation of carbon monoxide on platinum metals. J Chem Phys 97 4380- 386, 1989. [Pg.433]

Examples of perfluoroalkyl iodide addition to the triple bond include free radical addition of perfluoropropyl iodide to 1 -heptyne [28] (equation 21), thermal and free radical-initiated addition of lodoperfluoroalkanesulfonyl fluorides to acetylene [29] (equation 22), thermal addition of perfluoropropyl iodide to hexa-fluoro 2 butyne [30] (equation 23), and palladium-catalyzed addition of per-fluorobutyl iodide to phenylacetylene [31] (equation 24) The E isomers predominate in these reactions Photochemical addition of tnfluoromethyl iodide to vinylacetylene gives predominantly the 1 4 adduct by addition to the double bond [32] Platinum catalyzed addition of perfluorooctyl iodide to l-hexyne in the presence of potassium carbonate, carbon monoxide, and ethanol gives ethyl () per fluorooctyl-a-butylpropenoate [JJ] (equation 25)... [Pg.763]

Perhaps the most familiar example of heterogeneous catalysis is the series of reactions that occur in the catalytic converter of an automobile (Figure 11.12). Typically this device contains 1 to 3 g of platinum metal mixed with rhodium. The platinum catalyzes the oxidation of carbon monoxide and unburned hydrocarbons such as benzene, C6H6 ... [Pg.305]

Using a platinum catalyst, this reaction can now be carried out at temperatures as low as 40°C. The hydrogen used must be very pure traces of carbon monoxide can poison the catalyst. [Pg.502]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]

A sophisticated quantitative analysis of experimental data was performed by Voltz et al. (96). Their experiment was performed over commercially available platinum catalysts on pellets and monoliths, with temperatures and gaseous compositions simulating exhaust gases. They found that carbon monoxide, propylene, and nitric oxide all exhibit strong poisoning effects on all kinetic rates. Their data can be fitted by equations of the form ... [Pg.91]

Fig. 18. Inhibition effect of carbon monoxide on carbon monoxide conversion at 400°F over platinum. 100 ppm CaH8> 4.5% 02, 100 ppm NO. Fig. 18. Inhibition effect of carbon monoxide on carbon monoxide conversion at 400°F over platinum. 100 ppm CaH8> 4.5% 02, 100 ppm NO.
Figure 2.2. Thermal desorption spectra of carbon monoxide, measured mass spectrometically at mass 28 (atomic units, a.u.), on a platinum (100) surface upon which potassium has been pre-adsorbed to a surface coverage of 0K.7 Reprinted with permission from Elsevier Science. Figure 2.2. Thermal desorption spectra of carbon monoxide, measured mass spectrometically at mass 28 (atomic units, a.u.), on a platinum (100) surface upon which potassium has been pre-adsorbed to a surface coverage of 0K.7 Reprinted with permission from Elsevier Science.
We have undertaken a series of experiments Involving thin film models of such powdered transition metal catalysts (13,14). In this paper we present a brief review of the results we have obtained to date Involving platinum and rhodium deposited on thin films of tltanla, the latter prepared by oxidation of a tltanliua single crystal. These systems are prepared and characterized under well-controlled conditions. We have used thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and static secondary Ion mass spectrometry (SSIMS). Our results Illustrate the power of SSIMS In understanding the processes that take place during thermal treatment of these thin films. Thermal desorption spectroscopy Is used to characterize the adsorption and desorption of small molecules, In particular, carbon monoxide. AES confirms the SSIMS results and was used to verify the surface cleanliness of the films as they were prepared. [Pg.81]

Carbon Monoxide Oxidation on Platinum Coverage Dependence of the Product Internal Energy... [Pg.464]

This technique is the most widely used and the most useful for the characterization of molecular species in solution. Nowadays, it is also one of the most powerful techniques for solids characterizations. Solid state NMR techniques have been used for the characterization of platinum particles and CO coordination to palladium. Bradley extended it to solution C NMR studies on nanoparticles covered with C-enriched carbon monoxide [47]. In the case of ruthenium (a metal giving rise to a very small Knight shift) and for very small particles, the presence of terminal and bridging CO could be ascertained [47]. In the case of platinum and palladium colloids, indirect evidence for CO coordination was obtained by spin saturation transfer experiments [47]. [Pg.239]


See other pages where Carbon monoxide platinum is mentioned: [Pg.259]    [Pg.43]    [Pg.172]    [Pg.172]    [Pg.184]    [Pg.156]    [Pg.377]    [Pg.258]    [Pg.2411]    [Pg.138]    [Pg.221]    [Pg.551]    [Pg.23]    [Pg.197]    [Pg.187]    [Pg.83]    [Pg.102]    [Pg.139]    [Pg.107]    [Pg.321]    [Pg.318]    [Pg.80]    [Pg.86]    [Pg.465]    [Pg.467]    [Pg.469]    [Pg.544]    [Pg.330]    [Pg.330]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Carbon monoxide adsorption platinum-supported catalysts

Carbon monoxide on platinum

Carbon monoxide on platinum metals

Carbon monoxide over platinum

Carbon monoxide oxidation, on platinum

Carbon monoxide oxidation, platinum supported

Carbon monoxide oxidation, platinum supported catalyst preparation

Carbon monoxide oxidation, platinum supported catalysts

Carbon monoxide oxidation, platinum supported catalytic activity

Carbon monoxide-platinum adsorption

Carbon monoxide-platinum adsorption system

Oxidation over platinum, carbon monoxide

Platinum carbon

Platinum catalysts carbon monoxide oxidation

Platinum clusters carbon monoxide

Platinum complexes carbon monoxide

Platinum monoxide

Platinum supported catalysts, carbon monoxide

Platinum supported catalysts, carbon monoxide catalyst preparation

Platinum supported catalysts, carbon monoxide catalytic activity

Platinum-rhenium catalysts carbon monoxide

The oxidation of carbon monoxide on platinum

© 2024 chempedia.info