Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide kinetics

To study this discrimination, generally expressed as an M value, the ratio of the O2 and CO equilibrium constant values, researchers have used sterically hindered porphyrins (capped, pocket and hybrid porphyrins) with a view to providing an environment which would permit normal binding of dioxygen whilst hindering the binding of carbon monoxide. Kinetically, the major effect is a decrease in CO association rates, consistent with steric blocking in productlike transition states. [Pg.180]

Earth Elements in the Oxidation of Carbon Monoxide, Kinet. Katal. (1971) 12,961. [Pg.197]

Reference to Figure 3.4 shows that the reduction is not feasible at 800 K. but is feasible at 1300 K. However, we must remember that energetic feasibility does not necessarily mean a reaction will go kinetic stability must also be considered. Several metals are indeed extracted by reduction with carbon, but in some cases the reduction is brought about by carbon monoxide formed when air, or air-oxygen mixtures, are blown into the furnace. Carbon monoxide is the most effective reducing agent below about 980 K, and carbon is most effective above this temperature. [Pg.69]

The composition of the products of reactions involving intermediates formed by metaHation depends on whether the measured composition results from kinetic control or from thermodynamic control. Thus the addition of diborane to 2-butene initially yields tri-j iAbutylboraneTri-j -butylborane. If heated and allowed to react further, this product isomerizes about 93% to the tributylborane, the product initially obtained from 1-butene (15). Similar effects are observed during hydroformylation reactions however, interpretation is more compHcated because the relative rates of isomerization and of carbonylation of the reaction intermediate depend on temperature and on hydrogen and carbon monoxide pressures (16). [Pg.364]

The kinetics of this reaction, which can also be regarded as an erosion reaction, shows die effects of adsorption of the reaction product in retarding the reaction rate. The path of this reaction involves the adsorption of an oxygen atom donated by a carbon dioxide molecule on die surface of the coke to leave a carbon monoxide molecule in the gas phase. [Pg.272]

It was shown in laboratory studies that methanation activity increases with increasing nickel content of the catalyst but decreases with increasing catalyst particle size. Increasing the steam-to-gas ratio of the feed gas results in increased carbon monoxide shift conversion but does not affect the rate of methanation. Trace impurities in the process gas such as H2S and HCl poison the catalyst. The poisoning mechanism differs because the sulfur remains on the catalyst while the chloride does not. Hydrocarbons at low concentrations do not affect methanation activity significantly, and they reform into methane at higher levels, hydrocarbons inhibit methanation and can result in carbon deposition. A pore diffusion kinetic system was adopted which correlates the laboratory data and defines the rate of reaction. [Pg.56]

The kinetics of oxidation over noble metals is dramatically different and much more complex. Every chemical species has an inhibiting effect on the rate of oxidation of another species. Carbon monoxide is a particularly strong self-poison, so that its oxidation kinetics usually proceeds at a negative order with respect to CO concentration. The kinetics also... [Pg.89]

A sophisticated quantitative analysis of experimental data was performed by Voltz et al. (96). Their experiment was performed over commercially available platinum catalysts on pellets and monoliths, with temperatures and gaseous compositions simulating exhaust gases. They found that carbon monoxide, propylene, and nitric oxide all exhibit strong poisoning effects on all kinetic rates. Their data can be fitted by equations of the form ... [Pg.91]

The first and rate-determining step involves carbon monoxide dissociation from the initial pentacarbonyl carbene complex A to yield the coordinatively unsaturated tetracarbonyl carbene complex B (Scheme 3). The decarbonyla-tion and consequently the benzannulation reaction may be induced thermally, photochemically [2], sonochemically [3], or even under microwave-assisted conditions [4]. A detailed kinetic study by Dotz et al. proved that the initial reaction step proceeds via a reversible dissociative mechanism [5]. More recently, density functional studies on the preactivation scenario by Sola et al. tried to propose alkyne addition as the first step [6],but it was shown that this... [Pg.125]

An overall kinetic study on the Koch synthesis of succinic acid from acrylic acid and carbon monoxide in SO3—HaS04 has recently been reported (Sngita et. al., 1970). [Pg.30]

In contrast to the results of the reaction of tertiary and secondary alkyl cations with carbon monoxide (Figs. 1-5), which were obtained under thermodynamically controlled conditions, the results of the carbonylation with the vinyl cations were obtained under kinetically controlled conditions. This presents a difficulty in explaining the occurrence of the 1,2-CH3 shift in the reaction 16->-17, because it involves a strong increase in energy. The exclusive formation of the Z-stereoisomer 18 on carbonylation of the 1,2-dimethylvinyl cation 16 is remarkable, but does not allow an unambiguous conclusion about the detailed structure— linear 19 or bent 20—of the vinyl cation. A non-classical structure 21 can be disregarded, however, because the attack... [Pg.46]

Ethylene is selectively oxidized to ethylene oxide using a silver-based catalyst in a fixed-bed reactor. Ethylene and oxygen are supplied from the gas phase and ethylene oxide is removed by it. The catalyst is stationary. Undesired, kinetically determined by-products include carbon monoxide and water. Ideally, a pure reactant is converted to one product with no by-products. [Pg.349]

This chapter is concerned entirely with the insertion of carbon monoxide into transition metal-carbon cr-bonds. Sulfur dioxide insertion 154, 239), also common among transition metal-carbon complexes, will be treated in a complementary review, which is to appear later. Subject to the restrictions given at the beginning of Section VI, an attempt has been made at a complete literature coverage of the insertion of CO. Particular emphasis focuses on recent results, especially those of a kinetic and stereochemical nature. [Pg.90]

This chapter is concerned initially with kinetic results and mechanistic interpretations of the CO insertion (Section III) and extrusion (Section IV) reactions. A discussion of the stereochemical data follows (Section V), and a comprehensive survey of these reactions by the triads (Section VI) rounds out the review. Carbon monoxide insertion reactions were discussed in 1967 by Basolo and Pearson (21). Since then they have been mentioned in several reviews (49, 118, 203, inter alios) but have not been treated comprehensively. [Pg.94]

Although Pb(IV) is sufficiently strong an oxidant to oxidise halides, no kinetic data are available. Complexes of Pt(IV) and Au(III) oxidise iodide and thiocyanate ions but the other oxidants are weaker and form stable halo-complexes. However, some simple molecules such as hypophosphorous acid, carbon monoxide and molecular hydrogen are oxidised by the weaker members. [Pg.330]

The carbon monoxide reaction is well studied and the observed kinetics are well understood. Of particular interest is the so-called CO-inhibiting regime , characterized by carbon dioxide covering and blocking the surface, so that the reaction rate is governed by CO desorption rate (see original citations in [78]). [Pg.327]

In this chapter, we have summarized (recent) progress in the mechanistic understanding of the oxidation of carbon monoxide, formic acid, methanol, and ethanol on transition metal (primarily Pt) electrodes. We have emphasized the surface science approach employing well-defined electrode surfaces, i.e., single crystals, in combination with surface-sensitive techniques (FTIR and online OEMS), kinetic modeling and first-principles DFT calculations. [Pg.197]

Chang SC, Hamelin A, Weaver MJ. 1991. Dependence of the electrooxidation rates of carbon monoxide at gold on the surface crystallographic orientation A combined kinetic-surface infrared spectroscopy study. J Phys Chem 95 5560-5567. [Pg.200]

That carbon monoxide could be oxidised in a facile reaction at cryogenic temperature (100 K) was first established in 1987 by XPS at an aluminium surface.21 The participation of reactive oxygen transients O 1 (s) was central to the mechanism proposed, whereas the chemisorbed oxide O2 state present at 295 K was unreactive. This provided a further impetus for the transient concept that was suggested for the mechanism of the oxidation of ammonia at a magnesium surface (see Chapter 2). Of particular relevance, and of crucial significance, was Ertl s observation by STM in 1992 that oxygen chemisorption at Al(lll) resulted in kinetically hot adatoms (Figures 4.1 and 4.7). [Pg.85]


See other pages where Carbon monoxide kinetics is mentioned: [Pg.577]    [Pg.251]    [Pg.179]    [Pg.441]    [Pg.2244]    [Pg.332]    [Pg.2]    [Pg.7]    [Pg.23]    [Pg.274]    [Pg.319]    [Pg.98]    [Pg.197]    [Pg.131]    [Pg.7]    [Pg.95]    [Pg.195]    [Pg.87]    [Pg.94]    [Pg.377]    [Pg.256]    [Pg.226]    [Pg.152]    [Pg.118]    [Pg.253]    [Pg.660]    [Pg.8]   
See also in sourсe #XX -- [ Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 ]

See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.35 , Pg.36 , Pg.37 , Pg.38 , Pg.39 , Pg.40 , Pg.41 , Pg.42 , Pg.43 , Pg.44 , Pg.45 ]




SEARCH



Carbon kinetics

© 2024 chempedia.info