Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide alloys

The materials of constmction of the radiant coil are highly heat-resistant steel alloys, such as Sicromal containing 25% Cr, 20% Ni, and 2% Si. Triethyi phosphate [78-40-0] catalyst is injected into the acetic acid vapor. Ammonia [7664-41-7] is added to the gas mixture leaving the furnace to neutralize the catalyst and thus prevent ketene and water from recombining. The cmde ketene obtained from this process contains water, acetic acid, acetic anhydride, and 7 vol % other gases (mainly carbon monoxide [630-08-0][124-38-9] ethylene /74-< 3 -/7, and methane /74-< 2-<7/). The gas mixture is chilled to less than 100°C to remove water, unconverted acetic acid, and the acetic anhydride formed as a Hquid phase (52,53). [Pg.475]

Nickel [7440-02-0] Ni, recognized as an element as early as 1754 (1), was not isolated until 1820 (2). It was mined from arsenic sulfide mineral deposits (3) and first used in an alloy called German Silver (4). Soon after, nickel was used as an anode in solutions of nickel sulfate [7786-81 A] NiSO, and nickel chloride [7718-54-9] NiCl, to electroplate jewelry. Nickel carbonyl [13463-39-3] Ni(C02)4, was discovered in 1890 (see Carbonyls). This material, distilled as a hquid, decomposes into carbon monoxide and pure nickel powder, a method used in nickel refining (5) (see Nickel and nickel alloys). [Pg.9]

Ladle metallurgy, the treatment of Hquid steel in the ladle, is a field in which several new processes, or new combinations of old processes, continue to be developed (19,20). The objectives often include one or more of the following on a given heat more efficient methods for alloy additions and control of final chemistry improved temperature and composition homogenisation inclusion flotation desulfurization and dephosphorization sulfide and oxide shape control and vacuum degassing, especially for hydrogen and carbon monoxide to make interstitial-free (IF) steels. Electric arcs are normally used to raise the temperature of the Hquid metal (ladle arc furnace). [Pg.380]

Oxychlorination of Ethylene or Dichloroethane. Ethylene or dichloroethane can be chlorinated to a mixture of tetrachoroethylene and trichloroethylene in the presence of oxygen and catalysts. The reaction is carried out in a fluidized-bed reactor at 425°C and 138—207 kPa (20—30 psi). The most common catalysts ate mixtures of potassium and cupric chlorides. Conversion to chlotocatbons ranges from 85—90%, with 10—15% lost as carbon monoxide and carbon dioxide (24). Temperature control is critical. Below 425°C, tetrachloroethane becomes the dominant product, 57.3 wt % of cmde product at 330°C (30). Above 480°C, excessive burning and decomposition reactions occur. Product ratios can be controlled but less readily than in the chlorination process. Reaction vessels must be constmcted of corrosion-resistant alloys. [Pg.24]

Notwithstanding the large amount of work on pure iron and binary alloys, it remains difficult to translate the results to commercially useful steels. It is believed, on the one hand, that effusion of carbon monoxide can cause non-healing Assures in the scale , and on the other, that silicon creates self-healing layers at the metal interface . ... [Pg.277]

In the gas-cooled reactor, reaction.between the coolant and the moderator results in formation of a proportion of carbon monoxide in the atmosphere. This gas can be carburising to nickel-base alloys but the results of tests in which CO2 was allowed to react with graphite in the furnace indicate that the attack on high-nickel alloys is slight, even at moderately high temperatures and is still mainly due to simple oxidation. [Pg.1074]

Atli A, Ahon M, Beccat P, BertoUni JC, Tardy B. 1994. Carbon monoxide adsorption on a PtgoFe2o(lll) single-crystal alloy. Surf Sci 302 121-125. [Pg.307]

Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ. 1994. Carbon monoxide electrooxidation on well-characterized platinum-mthenium alloys. J Phys Chem 98 617-625. [Pg.337]

Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C. 1998. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. J Electroanal Chem 444 41-53. [Pg.370]

Soma-Noto Y, Sachtler WMH. 1974. Infrared spectra of carbon monoxide adsorbed on supported palladium and palladium-silver alloys, J Catal 32 315. [Pg.506]

In the refining of the Group V metals (which are more accurately represented as metal-carbon-oxygen alloys), carbon deoxidation is not the only method by which oxygen is removed, because sacrificial deoxidation also occurs simultaneously. The relative extents to which each of these two deoxidation modes contributes to the overall removal of oxygen can be assessed by calculating the ratio of the vapor pressures of carbon monoxide and the metal monoxide over the M-C-0 alloy. The value of this ratio for vanadium at 2000 K is given by the expression... [Pg.448]

As the assemblage is further heated and reaches a temperature of about 850°C, the carbon reacts with copper oxide on the surface of the alloy, reducing the copper to metallic copper, while the carbon is oxidized to carbon monoxide (it should be noted that practically all exposed copper surfaces acquire a thin layer of copper oxide formed by the oxidation of the metal when exposed to oxygen in the atmosphere) ... [Pg.231]

Carbon monoxide Carbon tetrafluoride F T Copper-lined metals for pressures <34 bar. Certain highly alloyed chrome steels Any common metal Iron, nickel and certain other metals at high pressures... [Pg.195]

Simplex A process for reducing the carbon content of ferrochrome, an alloy of iron and chromium. Some of the alloy is oxidized by heating in air, and this is mixed in appropriate proportions with the remainder on heating the mixture in a vacuum furnace the carbon volatilizes as carbon monoxide. [Pg.245]

Other hydride systems do not have such weight penalties and include magnesium nickel alloys, non-metallic polymers, or liquid hydride systems that use engine heat to disassociate fuels like methanol into a mixture of hydrogen and carbon monoxide. [Pg.108]

Guryanova, O. S., Y. M. Serov, S. G. Gul yanova and V. M. Gryaznov. 1988. Conversion of carbon monoxide on membrane catalysts of palladium alloys Reaction between CO and H2 on binary palladium alloys with ruthenium and nickel. Kinet. and Catal. 29(4) 728-731. [Pg.144]


See other pages where Carbon monoxide alloys is mentioned: [Pg.67]    [Pg.76]    [Pg.494]    [Pg.13]    [Pg.459]    [Pg.62]    [Pg.262]    [Pg.176]    [Pg.252]    [Pg.900]    [Pg.955]    [Pg.1079]    [Pg.96]    [Pg.194]    [Pg.221]    [Pg.118]    [Pg.198]    [Pg.103]    [Pg.131]    [Pg.57]    [Pg.129]    [Pg.155]    [Pg.156]    [Pg.156]    [Pg.169]    [Pg.191]    [Pg.388]    [Pg.532]    [Pg.533]   


SEARCH



Carbon Monoxide on Metals and Alloys

Carbon alloying

Carbon alloys

Carbon monoxide alloy effects

Carbon monoxide, environment-alloy

© 2024 chempedia.info