Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon micropores function

Fig. 8. Pore volume (0.4-2000 bar) of microporous activated carbon as function of the water (o) or n-decane (x) content. Total pore volume water n-decane 1 Intrusion... Fig. 8. Pore volume (0.4-2000 bar) of microporous activated carbon as function of the water (o) or n-decane (x) content. Total pore volume water n-decane 1 Intrusion...
Fig. 32. Reversible capacity of microporous carbon prepared from phenolic resins heated between 940 to 1 I00°C plotted as a function of the X-ray ratio R. R is a parameter which is empirically correlated to the fraction of single-layer graphene sheets in the samples. Fig. 32. Reversible capacity of microporous carbon prepared from phenolic resins heated between 940 to 1 I00°C plotted as a function of the X-ray ratio R. R is a parameter which is empirically correlated to the fraction of single-layer graphene sheets in the samples.
Bone is a porous tissue composite material containing a fluid phase, a calcified bone mineral, hydroxyapatite (HA), and organic components (mainly, collagen type). The variety of cellular and noncellular components consist of approximately 69% organic and 22% inorganic material and 9% water. The principal constiments of bone tissue are calcium (Ca ), phosphate (PO ), and hydroxyl (OH ) ions and calcium carbonate. There are smaller quantities of sodium, magnesium, and fluoride. The major compound, HA, has the formula Caio(P04)g(OH)2 in its unit cell. The porosity of bone includes membrane-lined capillary blood vessels, which function to transport nutrients and ions in bone, canaliculi, and the lacunae occupied in vivo by bone cells (osteoblasts), and the micropores present in the matrix. [Pg.413]

The N-doped carbons with a nanotube backbone combine a moderate presence of micropores with the extraordinary effect of nitrogen that gives pseudocapacitance phenomena. The capacitance of the PAN/CNts composite (ca. 100 F/g) definitively exceeds the capacitance of the single components (5-20 F/g). The nitrogen functionalities, with electron donor properties, incorporated into the graphene rings have a great importance in the exceptional capacitance behavior. [Pg.42]

Table 16-4 shows the IUPAC classification of pores by size. Micropores are small enough that a molecule is attracted to both of the opposing walls forming the pore. The potential energy functions for these walls superimpose to create a deep well, and strong adsorption results. Hysteresis is generally not observed. (However, water vapor adsorbed in the micropores of activated carbon shows a large hysteresis loop, and the desorption branch is sometimes used with the Kelvin equation to determine the pore size distribution.) Capillary condensation occurs in mesopores and a hysteresis loop is typically found. Macropores form important paths for molecules to diffuse into a par-... [Pg.8]

It is well known that Nafion ionomer contains both hydrophobic and hydrophilic domains. The former domain can facilitate gas transport through permeation, and the latter can facilitate proton transfer in the CL. In this new design, the catalyst loading can be further reduced to 0.04 mg/cm in an MEA [10,11]. However, an extra hydrophobic support layer is required. This thin, microporous GDL facilitates gas transport to the CL and prevents catalyst ink bleed into the GDL during applications. It contains both carbon and PTFE and functions as an electron conductor, a heat exchanger, a water removal wick, and a CL support. [Pg.65]

The formalism of nonlocal functional density theory provides an attractive way to describe the physical adsorption process at the fluid - solid interface.65 In particular, the ability to model adsorption in a pore of slit - like or cylindrical geometry has led to useful methods for extracting pore size distribution information from experimental adsorption isotherms. At the moment the model has only been tested for microporous carbons and slit - shaped materials.66,67 It is expected that the model will soon be implemented for silica surfaces. [Pg.55]

N-doping has already been reported for ACF and activated carbon [150,152], It is well known that the uptake pressure and the shape of the H20 isotherm are functions of both micropore size and surface chemical properties. In this case, however, the influence of micropore size can almost be excluded and the observed difference in the uptake pressure be attributed solely to carbon surface chemistry. It is therefore reasonable to conclude that the inner pore surface of the N-doped carbon is more hydrophilic than that of the undoped one. Since the O content of the former carbon is lower than that of the latter, the above results indicate that in this case the presence of N groups is more effective for H20 adsorption. [Pg.103]

The approach of research institutes AGLARG [9] was used for an operative estimation of gas sorption capacity for carbon sorbents. According to it micropore volume and the specific surface area have been chosen as determining parameters. To obtain the function approximating dependence of hydrogen sorption capacity on carbon materials from value of a specific surface area (at pressure 0.1 MPa and temperature 77 K), we used our experimental data (Table 1) and an experimental database (Table 2) of group of institutes - Inorganic Chemistry and Catalysis, Debye Institute, Utrecht University [10],... [Pg.637]

Many commercial activated carbons have been prepared with various sources of raw materials and different processing conditions. As a result, the micropore structures and specific surface areas of activated carbons, which are the most profound influences on the extent of adsorption, vary, and in general, activated carbons have a surface area of up to 3000 m2/g. The rate of adsorption increases with some function of the inverse of the radius of the activated carbon even though the adsorption capacity (i.e., equilibrium adsorption) is relatively independent of the particle diameter. However, for a highly porous adsorbent such as activated carbon, the... [Pg.215]


See other pages where Carbon micropores function is mentioned: [Pg.194]    [Pg.411]    [Pg.232]    [Pg.433]    [Pg.823]    [Pg.670]    [Pg.286]    [Pg.1500]    [Pg.296]    [Pg.306]    [Pg.138]    [Pg.430]    [Pg.317]    [Pg.327]    [Pg.216]    [Pg.404]    [Pg.155]    [Pg.27]    [Pg.187]    [Pg.389]    [Pg.608]    [Pg.711]    [Pg.26]    [Pg.296]    [Pg.306]    [Pg.450]    [Pg.102]    [Pg.123]    [Pg.129]    [Pg.178]    [Pg.178]    [Pg.179]    [Pg.195]    [Pg.289]    [Pg.344]    [Pg.344]    [Pg.139]    [Pg.436]   
See also in sourсe #XX -- [ Pg.823 ]




SEARCH



Carbon function

Carbon functionalization

Carbon functionalized

Carbon functionalizing

Carbonate functionality

Microporous carbons

Microporous carbons functions

Microporous carbons functions

© 2024 chempedia.info