Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon fibers resistivity

Acrylonitrile (AN), C H N, first became an important polymeric building block in the 1940s. Although it had been discovered in 1893 (1), its unique properties were not realized until the development of nitrile mbbers during World War II (see Elastomers, synthetic, nitrile rubber) and the discovery of solvents for the homopolymer with resultant fiber appHcations (see Fibers, acrylic) for textiles and carbon fibers. As a comonomer, acrylonitrile (qv) contributes hardness, rigidity, solvent and light resistance, gas impermeabiUty, and the abiUty to orient. These properties have led to many copolymer apphcation developments since 1950. [Pg.191]

Acryhcs and modacryhcs are also useflil industrial fibers. Fibers low in comonomer content, such as Dolan 10 and Du Font s PAN Type A, have exceptional resistance to chemicals and very good dimensional stabihty under hot—wet conditions. These fibers are useflil in industrial filters, battery separators, asbestos fiber replacement, hospital cubical curtains, office room dividers, uniform fabrics, and carbon fiber precursors. The exceUent resistance of acryhc fibers to sunlight also makes them highly suitable for outdoor use. Typical apphcations include modacryhcs, awnings, sandbags, tents, tarpauhns, covers for boats and swimming pools, cabanas, and duck for outdoor furniture (59). [Pg.283]

Process. Any standard precursor material can be used, but the preferred material is wet spun Courtaulds special acrylic fiber (SAF), oxidized by RK Carbon Fibers Co. to form 6K Panox B oxidized polyacrylonitrile (PAN) fiber (OPF). This OPF is treated ia a nitrogen atmosphere at 450—750°C, preferably 525—595°C, to give fibers having between 69—70% C, 19% N density less than 2.5 g/mL and a specific resistivity under 10 ° ohm-cm. If crimp is desired, the fibers are first knit iato a sock before heat treating and then de-knit. Controlled carbonization of precursor filaments results ia a linear Dow fiber (LDF), whereas controlled carbonization of knit precursor fibers results ia a curly carbonaceous fiber (EDF). At higher carbonizing temperatures of 1000—1400°C the fibers become electrically conductive (22). [Pg.69]

Chemically Resistant Fibers. Fibers with exceUent chemical resistance to corrosive and/or chemical warfare agents or extreme pH conditions (eg, very acidic or very alkaline) were initially used for protective clothing. However, appHcations for filtration of gases and Hquids in numerous industrial faciHties are now the more important. For example, PPS is suitable for use in filter fabrics for coal-fired boilers because of its outstanding chemical and heat resistance to acidic flue gases and its exceUent durabUity under these end use conditions. Many high tenacity fibers are also chemically inert or relatively unaffected under a variety of conditions. Aramids, gel spun polyethylene, polypropylene, fluorocarbon, and carbon fibers meet these criteria and have been used or are being considered for appHcations where chemical resistance is important. [Pg.70]

An important appHcation of MMCs in the automotive area is in diesel piston crowns (53). This appHcation involves incorporation of short fibers of alumina or alumina—siHca in the crown of the piston. The conventional diesel engine piston has an Al—Si casting alloy with a crown made of a nickel cast iron. The replacement of the nickel cast iron by aluminum matrix composite results in a lighter, more abrasion resistant, and cheaper product. Another appHcation in the automotive sector involves the use of carbon fiber and alumina particles in an aluminum matrix for use as cylinder liners in the Prelude model of Honda Motor Co. [Pg.204]

Carbon-Fiber Composites. Cured laminates of phenoHc resins and carbon-fiber reinforcement provide superior flammabiHty resistance and thermal resistance compared to unsaturated polyester and epoxy. Table 15 shows the dependence of flexural strength and modulus on phenoHc—carbon-fiber composites at 30—40% phenoHc resin (91). These composites also exhibit long-term elevated temperature stabiHty up to 230°C. [Pg.307]

Fibers. The principal type of phenoHc fiber is the novoloid fiber (98). The term novoloid designates a content of at least 85 wt % of a cross-linked novolak. Novoloid fibers are sold under the trademark Kynol, and Nippon Kynol and American Kynol are exclusive Hcensees. Novoloid fibers are made by acid-cataly2ed cross-linking of melt-spun novolak resin to form a fuUy cross-linked amorphous network. The fibers are infusible and insoluble, and possess physical and chemical properties that distinguish them from other fibers. AppHcations include a variety of flame- and chemical-resistant textiles and papers as weU as composites, gaskets, and friction materials. In addition, they are precursors for carbon fibers. [Pg.308]

Carbon, Carbides, and Nitrides. Carbon (graphite) is a good thermal and electrical conductor. It is not easily wetted by chemical action, which is an important consideration for corrosion resistance. As an important stmctural material at high temperature, pyrolytic graphite has shown a strength of 280 MPa (40,600 psi). It tends to oxidize at high temperatures, but can be used up to 2760°C for short periods in neutral or reducing conditions. The use of new composite materials made of carbon fibers is expected, especially in the field of aerospace stmcture. When heated under... [Pg.26]

Most recent studies (69) on elevated temperature performance of carbon fiber-based composites show that the oxidation resistance and elevated temperature mechanical properties of carbon fiber reinforced composites are complex and not always direcdy related to the oxidation resistance of the fiber. To some extent, the matrix acts as a protective barrier limiting the diffusion of oxygen to the encased fibers. It is therefore critical to maintain interfacial bonding between the fiber and the matrix, and limit any microcracking that may serve as a diffusion path for oxygen intmsion. Since interfacial performance typically deteriorates with higher modulus carbon fibers it is important to balance fiber oxidative stabiHty with interfacial performance. [Pg.7]

The synthesis of his[3-(2-a11y1phenoxy)phtha1imides] and their copolymer properties with BMI have been reported (43). These allylphenoxyimide—BMI copolymers provide toughness and temperature resistance when used in carbon fiber laminates (44). [Pg.28]

In addition to their exceptional tensile strengths, PAN-based carbon fibers are far more resistant to compressive failure than are their pitch-based counterparts or polymeric high-performance fibers. However, because the PAN precursor is not... [Pg.119]

Carbon-fiber reinforcement is more effective in resisting creep than glass-fiber reinforcement. [Pg.82]

Resistivities of 1 to 100,000 ohm-cm can be achieved and are proportional to cost. Various carbon fibers and powders are available with wide variations in conductivity yields in composites. [Pg.351]

Electrical Carbon fibers Ductility, Ductility, Resistivities of 1 to... [Pg.363]

Processing. The process requires a monofilament carbon-fiber core which is heated resistively in a tubular glass reactor shown schematically in Fig. 19.1. PI A carbon monofilament is pre-coated with a 1 pm layer of pyrolytic graphite to insure a smooth deposition surface and a constant resistivity. 1 1 SiC is then deposited by the reaction of silane and a hydrocarbon. Other precursors such as SiCl4, and CH3SiCl3 are also being investigated. A fiber cross-section is shown in Fig. 19.2.P1... [Pg.470]


See other pages where Carbon fibers resistivity is mentioned: [Pg.23]    [Pg.23]    [Pg.1173]    [Pg.144]    [Pg.633]    [Pg.23]    [Pg.23]    [Pg.1173]    [Pg.144]    [Pg.633]    [Pg.79]    [Pg.5]    [Pg.197]    [Pg.69]    [Pg.73]    [Pg.320]    [Pg.224]    [Pg.337]    [Pg.1]    [Pg.5]    [Pg.6]    [Pg.7]    [Pg.8]    [Pg.30]    [Pg.59]    [Pg.123]    [Pg.141]    [Pg.154]    [Pg.158]    [Pg.190]    [Pg.191]    [Pg.198]    [Pg.199]    [Pg.116]    [Pg.49]    [Pg.814]    [Pg.834]    [Pg.144]    [Pg.612]    [Pg.372]    [Pg.379]   


SEARCH



Carbonation resistance

© 2024 chempedia.info