Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon Earth abundances

ISOTOPES There are 15 isotopes of carbon, two of which are stable. Stable carbon-12 makes up 98.89% of the elemenfs natural abundance in the Earth s crust, and carbon-13 makes up just 1.11% of carbon s abundance in the Earth s crust. All the other isotopes of carbon are radioactive with half-lives varying from 30 nanoseconds (C-21) to 5,730 years (C-14). [Pg.191]

Earth abundantly displays life that uses solar, geothermal, and chemical energy to maintain thermodynamic disequilibria, covalent bonds between carbon, water as the liquid, and DNA as a molecular system to support Darwinian evolution. Life with those characteristics can be found wherever water and energy are available. [Pg.18]

Carbon dioxide is a potential carbon resource abundant on earth. It is also a green house gas with a rapidly increasing atmospheric concentration during the last two centuries. Chemical fixation of CO2 is an attractive technique for utilization of carbon resources, as well as for the reduction of the atmospheric concentration of CO2. Nevertheless, CO2 is the stablest among carbon based substances under the enviromnental conditions. It has not been incorporated as a major industrial material. [Pg.89]

At this time in the Earth s history the carbon dioxide abundance was higher than its present value since this gas accumulated in the absence of a biosphere. Rutten (1966) speculated that the atmospheric C02 level was 10 times PAL (present atmospheric level) about 3 x 109 years ago. On the other hand the presence of H20 in the atmosphere led, by photochemical dissociation, to the formation of free radicals and molecular oxygen. An estimate of the importance of these reactions is necessary to give some idea of the oxygen level in pre-biospheric times. The photodissociation of water vapour can be represented as follows (Suess, 1966) ... [Pg.21]

On Earth, elements maybe found in the lithosphere (the rocky, solid part of Earth), the hydrosphere (the aqueous, or watery, part of Earth), or the atmosphere. Elements such as the noble gases, the rare earths, and commercially valuable metals like silver and gold occur in only trace quantities. Others, like oxygen, silicon, aluminum, iron, calcium, sodium, hydrogen, sulfur, and carbon are abundant. [Pg.33]

It is vital that we seek to maximise the metals catalytic activity and recover 100% of elements from catalytic processes at both the end of reaction and end of life (the only exception may be carbon that can be burnt for energy production at end of life). Development and application of Earth-abundant catalysts for a wider range of catalytic applications is possible in the midterm. However, the long-term and ideal scenario would be that even critical elements can be used as sustainable catalysts if total recoveiy from anthropogenic cycles is guaranteed. The concept of elemental sustainability for catalysis is likely to become increasingly important in the future. Now is the time for producers and users alike to progress to circular economies and embrace sustainable catalysis. [Pg.11]

Heat-treated non-precious metal catalysts, synthesized from earth-abundant elements, are capable of catalyzing the ORR and efficiently generating electricity from fuels via a direct electrochemical conversion. Carbon-nitrogen precursors, supports, and in situ formed graphitized carbon play an important role in the catalyst performance. [Pg.241]

The light-assisted dissociation of water is presently in the focus of a series of research initiatives around the globe. The background is the attempt to produce fuels, in particular hydrogen, in a renewable, carbon neutral manner. Since bio-mimetic approaches are relatively far from robustness and sufficient efficiency, the development of mostly inorganic material-based systems and structures appears more favorable presently. Also, the adaption of the concepts of nature that uses Earth-abundant components, albeit with low efficiency and stability, neglects that natural... [Pg.1909]

Oxygen is the most abundant element on earth The earths crust is rich in carbonate and sili cate rocks the oceans are almost entirely water and oxygen constitutes almost one fifth of the air we breathe Carbon ranks only fourteenth among the elements in natural abundance but trails only hydro gen and oxygen in its abundance in the human body It IS the chemical properties of carbon that make it uniquely suitable as the raw material forthe building blocks of life Let s find out more about those chemi cal properties... [Pg.6]

Calcium. Calcium is the fifth most abundant element in the earth s cmst. There is no foreseeable lack of this resource as it is virtually unlimited. Primary sources of calcium are lime materials and gypsum, generally classified as soil amendments (see Calcium compounds). Among the more important calcium amendments are blast furnace slag, calcitic limestone, gypsum, hydrated lime, and precipitated lime. Fertilizers that carry calcium are calcium cyanamide, calcium nitrate, phosphate rock, and superphosphates. In addition, there are several organic carriers of calcium. Calcium is widely distributed in nature as calcium carbonate, chalk, marble, gypsum, fluorspar, phosphate rock, and other rocks and minerals. [Pg.245]

Oxygen is by far the most abundant element in cmstal rocks, composing 46.6% of the Hthosphere (4). In rock mineral stmctures, the predominant anion is, and water (H2O) itself is almost 90% oxygen by weight. The nonmetaUic elements fluorine, sulfur, carbon, nitrogen, chlorine, and phosphoms are present in lesser amounts in the Hthosphere. These elements aU play essential roles in life processes of plants and animals, and except for phosphoms and fluorine, they commonly occur in earth surface environments in gaseous form or as dissolved anions. [Pg.198]

Cellulose A polymer of six-carbon glucose sugars found in all plant matter the most abundant biological substance on earth. [Pg.901]

In addition to its presence as the free element in the atmosphere and dissolved in surface waters, oxygen occurs in combined form both as water, and a constituent of most rocks, minerals, and soils. The estimated abundance of oxygen in the crustal rocks of the earth is 455 000 ppm (i.e. 45.5% by weight) see silicates, p. 347 aluminosilicates, p. 347 carbonates, p. 109 phosphates, p. 475, etc. [Pg.603]

Zinc (76ppm of the earth s crust) is about as abundant as rubidium (78 ppm) and slightly more abundant than copper (68 ppm). Cadmium (0.16 ppm) is similar to antimony (0.2 ppm) it is twice as abundant as mercury (0.08 ppm), which is itself as abundant as silver (0.08 ppm) and close to selenium (0.05 ppm). These elements are chalcophiles (p. 648) and so, in the reducing atmosphere prevailing when the earth s crust solidified, they separated out in the sulfide phase, and their most important ores are therefore sulfides. Subsequently, as rocks were weathered, zinc was leached out to be precipitated as carbonate, silicate or phosphate. [Pg.1202]

Aluminum is the most abundant metallic element in the Earth s crust and, after oxygen and silicon, the third most abundant element (see Fig. 14.1). However, the aluminum content in most minerals is low, and the commercial source of aluminum, bauxite, is a hydrated, impure oxide, Al203-xH20, where x can range from 1 to 3. Bauxite ore, which is red from the iron oxides that it contains (Fig. 14.23), is processed to obtain alumina, A1203, in the Bayer process. In this process, the ore is first treated with aqueous sodium hydroxide, which dissolves the amphoteric alumina as the aluminate ion, Al(OH)4 (aq). Carbon dioxide is then bubbled through the solution to remove OH ions as HCO and to convert some of the aluminate ions into aluminum hydroxide, which precipitates. The aluminum hydroxide is removed and dehydrated to the oxide by heating to 1200°C. [Pg.718]

Silicon is the second most abundant element in the Earth s crust. It occurs widely in rocks as silicates, compounds containing the silicate ion, Si032, and as the silica, Si02, of sand (Fig. 14.33). Pure silicon is obtained from quartzite, a granular form of quartz (another solid phase of SiOz), bv reduction with high-purity carbon in an electric arc furnace ... [Pg.727]

Isotopes are also used to determine properties of the environment. Just as carbon-14 is used to date organic materials, geologists can determine the age of very old substances such as rocks by measuring the abundance in rocks of radioisotopes with longer half-lives. Uranium-238 (t1/2 = 4.5 Ga, 1 Ga = 10y years) and potassium-40 (t,/2 = 1.26 Ga) are used to date very old rocks. For example, potassium-40 decays by electron capture to form argon-40. The rock is placed under vacuum and crushed, and a mass spectrometer is used to measure the amount of argon gas that escapes. This technique was used to determine the age of rocks collected on the surface of the Moon they were found to be 3.5-4.0 billion years old, about the same age as the Earth. [Pg.834]

Water and carbon play critical roles in many of the Earth s chemical and physical cycles and yet their origin on the Earth is somewhat mysterious. Carbon and water could easily form solid compounds in the outer regions of the solar nebula, and accordingly the outer planets and many of their satellites contain abundant water and carbon. The type I carbonaceous chondrites, meteorites that presumably formed in the asteroid belt between the terrestrial and outer planets, contain up to 5% (m/m) carbon and up to 20% (m/m) water of hydration. Comets may contain up to 50% water ice and 25% carbon. The terrestrial planets are comparatively depleted in carbon and water by orders of magnitude. The concentration of water for the whole Earth is less that 0.1 wt% and carbon is less than 500 ppm. Actually, it is remarkable that the Earth contains any of these compounds at all. As an example of how depleted in carbon and water the Earth could have been, consider the moon, where indigenous carbon and water are undetectable. Looking at Fig. 2-4 it can be seen that no water- or carbon-bearing solids should have condensed by equilibrium processes at the temperatures and pressures that probably were typical in the zone of fhe solar... [Pg.22]


See other pages where Carbon Earth abundances is mentioned: [Pg.392]    [Pg.68]    [Pg.3722]    [Pg.283]    [Pg.613]    [Pg.251]    [Pg.849]    [Pg.1347]    [Pg.682]    [Pg.12]    [Pg.41]    [Pg.186]    [Pg.99]    [Pg.358]    [Pg.66]    [Pg.433]    [Pg.338]    [Pg.73]    [Pg.475]    [Pg.198]    [Pg.473]    [Pg.18]    [Pg.157]    [Pg.66]    [Pg.6]    [Pg.647]    [Pg.1041]    [Pg.1174]    [Pg.412]    [Pg.34]    [Pg.23]   
See also in sourсe #XX -- [ Pg.557 , Pg.557 ]




SEARCH



Carbon abundance

© 2024 chempedia.info