Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide plasticization

Glassy polymeric materials are often plasticized when used in gas membranes due to sorption. This can be overcome by annealing or crosshnking, however, this method does not influence the selectivity of the membrane, instead the permeability is decreased. Another method to stabilize the plasticization is to use polymer blends, as demonstrated with Matrimid 5218 and a copoly(imide) P84. The material is stabilized against carbon dioxide plasticization and the selectivity for a mixture of carbon dioxide and methane is improved. Hollow fiber membranes composed of blends of Pis with enhanced resistance towards hydrocarbons have been developed. ... [Pg.494]

Wind, J.D., Bickel, C.S., Paul, D.R. and Koros, W.J. 2003a. Sohd-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. [Pg.383]

J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Solid-state covalent cross-hnking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules, 36, 1882-1888 (2003). [Pg.25]

M. Alexis, W. Hillock, W. J. Koros, Cross-hnkable polyimide membrane for natural gas purification and carbon dioxide plasticization rednction. Macromolecules, 40, 583-587... [Pg.25]

J. Xia, T.-S. Chung, D.R. Paul, Physical aging and carbon dioxide plasticization of thin polyimide films in mixed gas permeation. Journal of Membrane Science 450 (2014) 457-468. [Pg.200]

Commercially, urea is produced by the direct dehydration of ammonium carbamate, NH2COONH4, at elevated temperature and pressure. Ammonium carbamate is obtained by direct reaction of ammonia and carbon dioxide. The two reactions are usually carried out simultaneously in a high pressure reactor. Recendy, urea has been used commercially as a catde-feed supplement (see Feeds and feed additives). Other important appHcations are the manufacture of resins (see Amino resins and plastics), glues, solvents, and some medicinals. Urea is classified as a nontoxic compound. [Pg.298]

Fillers that contain combined water or carbon dioxide, such as alumina trihydrate, Mg(OH)2, or dawsonite [12011 -76-6] increase fire resistance by hberating noncombustible gases when they are heated. These gases withdraw heat from the plastic and can also reduce the oxygen concentration of the air surrounding the composition. [Pg.370]

Toxicity. The products of combustioa have beea studied for a number of plastic foams (257). As with other organics the primary products of combustion are most often carbon monoxide and carbon dioxide with smaller amounts of many other species depending on product composition and test conditions. [Pg.421]

Increasingly, plastics are being used as parenteral packaging (qv) materials. Plastics such as poly(vinyl chloride), polyethylene, and polypropylene are employed. However, plastics may contain various additives that could leach into the product, such as plasticizers (qv) and antioxidants. PermeabiUty of plastics to oxygen, carbon dioxide, and water vapor must be tested in the selection of plastic containers. Furthermore, the plastic should withstand sterilization. Flaking of plastic particles should not occur and clarity necessary for inspection should be present. [Pg.234]

Emissions During Disposal and Incineration. The increasing use of modem incinerators to dispose of domestic waste results in complete combustion of plasticizers to carbon dioxide and water. The preponderance of plasticizer going into landfiUs is as plasticized PVC. Once a landfiU has been capped anaerobic conditions prevail and it is biologically relatively inactive. Under these conditions the main route by which organic components are removed from the landfiU contents is by ingress of water, extraction, and subsequent loss of water from the site to the environment. [Pg.132]

The effect of plasticizers and temperature on the permeabiUty of small molecules in a typical vinyUdene chloride copolymer has been studied thoroughly. The oxygen permeabiUty doubles with the addition of about 1.7 parts per hundred resin (phr) of common plasticizers, or a temperature increase of 8°C (91). The effects of temperature and plasticizer on the permeabiUty are shown in Figure 4. The moisture (water) vapor transmission rate (MVTR or WVTR) doubles with the addition of about 3.5 phr of common plasticizers (92). The dependence of the WVTR on temperature is a Htde more comphcated. WVTR is commonly reported at a constant difference in relative humidity and not at a constant partial pressure difference. WVTR is a mixed term that increases with increasing temperature because both the fundamental permeabiUty and the fundamental partial pressure at constant relative humidity increase. Carbon dioxide permeabiUty doubles with the addition of about 1.8 phr of common plasticizers, or a temperature increase of 7°C (93). [Pg.435]

Vinylidene Chloride Copolymer Latex. Vinyhdene chloride polymers are often made in emulsion, but usuaUy are isolated, dried, and used as conventional resins. Stable latices have been prepared and can be used direcdy for coatings (171—176). The principal apphcations for these materials are as barrier coatings on paper products and, more recently, on plastic films. The heat-seal characteristics of VDC copolymer coatings are equaUy valuable in many apphcations. They are also used as binders for paints and nonwoven fabrics (177). The use of special VDC copolymer latices for barrier laminating adhesives is growing, and the use of vinyhdene chloride copolymers in flame-resistant carpet backing is weU known (178—181). VDC latices can also be used to coat poly(ethylene terephthalate) (PET) bottles to retain carbon dioxide (182). [Pg.442]

Vinyl compares favorably to other packaging materials. In 1992, a lifecycle assessment comparison of specific packages made from glass, paperboard, paper, and selected plastics concluded that vinyl was the material that has the lowest production energy and carbon dioxide emissions, as well as the lowest fossil fuel and raw material requirements of the plastics studied (169). Vinyl saves more than 34 million Btu per 1000 pounds manufactured compared to the highest energy-consuming plastic (170). [Pg.509]

Furthermore, it is not tme that other plastics are more environmentally friendly than vinyl. A more recent study compared vinyl to a number of other packaging materials and found that vinyl consumed the least amount of energy, used the lowest level of fossil fuels, consumed the least amount of raw materials, and produced the lowest levels of carbon dioxide of any of the plastics studied (184). In fact, the Norwegian environmental group BeUona has concluded that a generally reduced use of vinyl plastics can lead to a worsening of the environmental situation (185). [Pg.509]

Plasticized polymers have been observed to behave like miscible blends. The permeabiUties of oxygen, carbon dioxide, and water vapor in a vinybdene chloride copolymer increase exponentially with increasing plasticizer (4,5,28). About 1.6 parts plasticizer per hundred parts polymer is enough to double the permeabiUty. [Pg.498]

The ammonium carbamate then loses a molecule of water to produce urea [57-13-6] CO(NH2)2- Commercially, this is probably the most important reaction of carbon dioxide and it is used worldwide ia the production of urea (qv) for synthetic fertilizers and plastics (see Amino resins Carbamic acid). [Pg.20]

In addition to chemical synthesis and enhanced oil recovery, gaseous carbon dioxide is used in the carbonated beverage industry. Carbon dioxide gas under pressure is introduced into mbber and plastic mixes, and on pressure release a foamed product is produced. Carbon dioxide and inert gas mixtures rich in carbon dioxide are used to purge and fiH industrial equipment to prevent the formation of explosive gas mixtures. [Pg.24]

To reduce the amount of dust produced, water can be added to the abrasive from a circular water sprayer around the no22le. Chemical corrosion inhibitors must be dissolved in the water to prevent flash msting of the steel. Newer methods to reduce dust include the use of ice, soHd carbon dioxide (dry ice), or plastic beads as abrasives. Blasting with dry ice is inexpensive and effective, but the accumulation of carbon dioxide must be avoided in enclosures. Plastic beads are inexpensive, but the cutting efficiency is low and paint removal is slow the beads can be cleaned of paint particles and reused. [Pg.364]

Softer metals such as aluminum and its alloys can be blast cleaned using abrasives that are not as hard as those used on steel. Garnet, walnut shells, corncobs, peach pits, glass or plastic beads, and soHd carbon dioxide have been used successfully. [Pg.365]

The rate of decomposition in unmanaged landfills, as measured by gas production, reaches a peak within the first 2 years and then slowly tapers off, continuing in many cases for periods up to 25 years or more. The total volume of the gases released during anaerobic decomposition can be estimated in a number of ways. If all the organic constituents in the wastes (with the exception of plastics, rubber, and leather) are represented with a generahzed formula of the form QH O N, the total volume of gas can be estimated by using Eq. (25-27) with the assumption of completed conversion to carbon dioxide and methane. [Pg.2254]

You can observe heterogeneous nucleation easily in carbonated drinks like "fizzy" lemonade. These contain carbon dioxide which is dissolved in the drink under pressure. When a new bottle is opened the pressure on the liquid immediately drops to that of the atmosphere. The liquid becomes supersaturated with gas, and a driving force exists for the gas to come out of solution in the form of bubbles. The materials used for lemonade bottles - glass or plastic - are poor catalysts for the heterogeneous nucleation of gas bubbles and are usually very clean, so you can swallow the drink before it loses its "fizz". But ordinary blackboard chalk (for example), is an excellent former of bubbles. If you drop such a nucleant into a newly opened bottle of carbonated beverage, spectacular heterogeneous nucleation ensues. Perhaps it is better put another way. Chalk makes lemonade fizz up. [Pg.72]


See other pages where Carbon dioxide plasticization is mentioned: [Pg.299]    [Pg.96]    [Pg.299]    [Pg.96]    [Pg.79]    [Pg.5]    [Pg.222]    [Pg.230]    [Pg.8]    [Pg.371]    [Pg.449]    [Pg.396]    [Pg.12]    [Pg.275]    [Pg.279]    [Pg.90]    [Pg.270]    [Pg.473]    [Pg.475]    [Pg.197]    [Pg.347]    [Pg.54]    [Pg.238]    [Pg.341]    [Pg.344]    [Pg.163]    [Pg.332]    [Pg.364]    [Pg.137]    [Pg.2002]   
See also in sourсe #XX -- [ Pg.160 ]

See also in sourсe #XX -- [ Pg.160 ]




SEARCH



© 2024 chempedia.info