Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbohydrates sensitivity

In the determination of carbohydrates, sensitivity can often be increased by using fluorescence rather than absorbance for the final determination. With compounds that are not normally fluorescent, it becomes necessary to find fluorescent derivatives. Hirayama [160] concentrated the carbohydrates in coastal water samples, using electrodialysis and evaporation, and made fluorescent derivatives using anthrone and 5-hydroxyl-1-tetralone, determining pentoses separately from hexoses in the process. While this method does seem to have the extra sensitivity expected from fluorescent methods, the extra manipulations render it unsatisfactory for routine use. [Pg.397]

The relative proportions of unsaturated carbohydrate, sensitizer (usually acetone), and solvent may have a decided effect upon a photochemical addition reaction, as at least three competing processes (cycloaddition, radical addition, and energy transfer) are possible. The irradiation of 1 in the presence of 2-propanol and acetone provides an illustration (see Scheme 4). When a small proportion of sensitizer... [Pg.120]

If the patient is carbohydrate-sensitive reduce his intake of carbohydrate, paying particular attention to sucrose and honey, as these are major sources of fructose. [Pg.61]

If the carbohydrate-sensitive patient is taking an oral contraceptive it is possible that withdrawal of this type of contraceptive will reduce the extent of the carbohydrate-sensitivity. ... [Pg.61]

Weight reduction will frequently make the patient no longer "carbohydrate-sensitive. ... [Pg.61]

But it seems to be that 1) only certain carbohydrates may play a role in atherosclerosis and 2) only in a certain group of the population, which is carbohydrate sensitive i.e. up to 13% of men between 25-79 years respond with an elevation of blood triglycerides and in some group of women, 3) over-abundance of carbohydrates in the diet may be the prerequisite. 4) carbohydrates may have an effect only after they are transformed to triglycerides in the organism. [Pg.206]

Several aspects affect the extent and character of taste and smell. People differ considerably in sensitivity and appreciation of smell and taste, and there is lack of a common language to describe smell and taste experiences. A hereditary or genetic factor may cause a variation between individual reactions, eg, phenylthiourea causes a bitter taste sensation which may not be perceptible to certain people whose general abiUty to distinguish other tastes is not noticeably impaired (17). The variation of pH in saUva, which acts as a buffer and the charge carrier for the depolarization of the taste cell, may influence the perception of acidity differently in people (15,18). Enzymes in saUva can cause rapid chemical changes in basic food ingredients, such as proteins and carbohydrates, with variable effects on the individual. [Pg.10]

Colorimetric Methods. Numerous colorimetric methods exist for the quantitative determination of carbohydrates as a group (8). Among the most popular of these is the phenol—sulfuric acid method of Dubois (9), which rehes on the color formed when a carbohydrate reacts with phenol in the presence of hot sulfuric acid. The test is sensitive for virtually all classes of carbohydrates. Colorimetric methods are usually employed when a very small concentration of carbohydrate is present, and are often used in clinical situations. The Somogyi method, of which there are many variations, rehes on the reduction of cupric sulfate to cuprous oxide and is appHcable to reducing sugars. [Pg.10]

The modes of action for niclosamide are interference with respiration and blockade of glucose uptake. It uncouples oxidative phosphorylation in both mammalian and taenioid mitochondria (22,23), inhibiting the anaerobic incorporation of inorganic phosphate into adenosine triphosphate (ATP). Tapeworms are very sensitive to niclosamide because they depend on the anaerobic metaboHsm of carbohydrates as their major source of energy. Niclosamide has selective toxicity for the parasites as compared with the host because Httle niclosamide is absorbed from the gastrointestinal tract. Adverse effects are uncommon, except for occasional gastrointestinal upset. [Pg.244]

C1O3/ACOH, 25°, 50% yield, [- ROCOPh (- ROH + PhC02H)]. This method was used to remove benzyl ethers from carbohydrates that contain functional groups sensitive to catalytic hydiogenation or dissolving metals. Esters are stable, but glycosides or acetals are cleaved. [Pg.50]

The carbohydrate (again often molasses, 15 - 25%) and added nutrients are pH-adjusted to below 4.0 and, for Otis process, have to be sterilised. It is necessary to add potassium hexacyanoferrate but greater care is required in this process compared to surface culture. The A. niger seems to be more sensitive to and more easily inhibited by hexacyanoferrate in submerged culture. It is essential however to lower the ferrous and manganese concentrations, probably below 200 and 5 pg l1 respectively, to optimise the performance of A. niger. [Pg.135]

The first hormonal signal found to comply with the characteristics of both a satiety and an adiposity signal was insulin [1]. Insulin levels reflect substrate (carbohydrate) intake and stores, as they rise with blood glucose levels and fall with starvation. In addition, they may reflect the size of adipose stores, because a fatter person secretes more insulin than a lean individual in response to a given increase of blood glucose. This increased insulin secretion in obesity can be explained by the reduced insulin sensitivity of liver, muscle, and adipose tissue. Insulin is known to enter the brain, and direct administration of insulin to the brain reduces food intake. The adipostatic role of insulin is supported by the observation that mutant mice lacking the neuronal insulin receptor (NDRKO mice) develop obesity. [Pg.209]

This series in heterocychc chemistry is being introduced to collectively make available critically and comprehensively reviewed hterature scattered in various journals as papers and review articles. All sorts of heterocyclic compounds originating from synthesis, natural products, marine products, insects, etc. will be covered. Several heterocyclic compounds play a significant role in maintaining life. Blood constituents hemoglobin and purines, as well as pyrimidines, are constituents of nucleic acid (DNA and RNA). Several amino acids, carbohydrates, vitamins, alkaloids, antibiotics, etc. are also heterocyclic compounds that are essential for life. Heterocyclic compounds are widely used in clinical practice as drugs, but all applications of heterocyclic medicines can not be discussed in detail. In addition to such applications, heterocyclic compounds also find several applications in the plastics industry, in photography as sensitizers and developers, and the in dye industry as dyes, etc. [Pg.9]

Hagiwara T, Kijima-Suda I, Ido T, Ohrui H, Tomita K (1994) Inhibition of bacterial and viral sialidases by 3-fluoro-V-acetyIneuraminic acid, Carbohydr Res 263 167-172 Haskell TH, Peterson FE, Watson D, Plessas NR, Culbertson T (1970) Neuraminidase inhibition and viral chemotherapy, J Med Chem 13 697-704 Hatakeyama S, Sugaya N, Ito M, Yamazaki M, Ichikawa M, Kimura K, Kiso M, Shimizu H, Kawakami C, Koike K, Mitamura K, Kawaoka Y (2007) Emergence of influenza B viruses with reduced sensitivity to neuraminidase inhibitors, JAMA 297 1435-1442 Hay AJ (1992) The action of adamantanamines against influenza A viruses inhibition of the M2 ion channel protein, Semin Virol 3 21-30... [Pg.148]

Derivatives play an essential part in almost all f.a.b.-m.s. studies of carbohydrates. They facilitate spectral interpretation (see Sections IV-VI), improve sensitivity (see Section 11,6), permit the analysis of salty samples (see later), allow unambiguous sequencing (see Section V,2), confirm the presence of cyclic structures (see Section VI,S), enable spectra to be obtained from very large molecules (see Section III,4), and help in the location of O-acylated residues in oligosaccharides (see Section V,S). [Pg.30]

There are three main reasons for this choice. Firstly, it becomes more and more difficult to obtain recordable, molecular-ion signals from un-derivatized carbohydrates as their M, increases significantly above 3000. Secondly, the mass spectrometers that have been used in all high-mass-carbofiydrate studies published at the time of writing this article are not capable of very sensitive analysis above —3800 mass units (see later). Thirdly, at masses >4000, it is usually not practicable to work at the resolution necessary for adjacent peaks to appear as separate signals in the spectrum. To do so would require that the source and collector slits be narrowed to such a degree that there would be an unacceptable loss in sensitivity. Thus, spectra acquired at mass >4000 are usually composed of unresolved clusters. [Pg.36]


See other pages where Carbohydrates sensitivity is mentioned: [Pg.26]    [Pg.61]    [Pg.26]    [Pg.61]    [Pg.284]    [Pg.9]    [Pg.29]    [Pg.252]    [Pg.570]    [Pg.988]    [Pg.422]    [Pg.342]    [Pg.121]    [Pg.853]    [Pg.242]    [Pg.151]    [Pg.157]    [Pg.231]    [Pg.27]    [Pg.36]    [Pg.37]    [Pg.38]    [Pg.63]    [Pg.71]    [Pg.71]    [Pg.83]    [Pg.407]    [Pg.257]    [Pg.177]    [Pg.321]    [Pg.664]    [Pg.853]    [Pg.186]    [Pg.217]    [Pg.1065]   
See also in sourсe #XX -- [ Pg.570 ]

See also in sourсe #XX -- [ Pg.133 ]




SEARCH



© 2024 chempedia.info