Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocation ionization

There are three methods for generating carbocations ionization of a C X lone pair on the heteroatom in a C=X bond with a Lewis acid, and reaction of a C=C 77 bond with a Lewis acid such as H+ or a carbocation. [Pg.109]

Nonbonded electron pair donors (w-donors) are expectedly readily protonated (or coordinated) with superacids. Remarkably, this includes even xenon, long considered an inert gas. The protonation of some 7T-, (T- and -bases and their subsequent ionization to carbocations or onium ions is depicted as follows ... [Pg.101]

The reverse reaction of the protolytic ionization of hydrocarbons to carbocations, that is, the reaction of trivalent carbocations with molecular hydrogen giving their parent hydrocarbons, involves the same five-coordinate carbonium ions. [Pg.163]

The alkyl halide m this case 2 bromo 2 methylbutane ionizes to a carbocation and a halide anion by a heterolytic cleavage of the carbon-halogen bond Like the dissoci ation of an aUcyloxonmm ion to a carbocation this step is rate determining Because the rate determining step is ummolecular—it involves only the alkyl halide and not the base—It is a type of El mechanism... [Pg.218]

There is a strong similarity between the mechanism shown m Eigure 5 12 and the one shown for alcohol dehydration m Eigure 5 6 The mam difference between the dehy dration of 2 methyl 2 butanol and the dehydrohalogenation of 2 bromo 2 methylbutane IS the source of the carbocation When the alcohol is the substrate it is the correspond mg alkyloxonmm ion that dissociates to form the carbocation The alkyl halide ionizes directly to the carbocation... [Pg.219]

Section 5 17 In the absence of a strong base alkyl halides eliminate by an El mech anism Rate determining ionization of the alkyl halide to a carbocation is followed by deprotonation of the carbocation... [Pg.223]

Partial but not complete loss of optical activity m S l reactions probably results from the carbocation not being completely free when it is attacked by the nucleophile Ionization of the alkyl halide gives a carbocation-hahde ion pair as depicted m Figure 8 8 The halide ion shields one side of the carbocation and the nucleophile captures the carbocation faster from the opposite side More product of inverted configuration is formed than product of retained configuration In spite of the observation that the products of S l reactions are only partially racemic the fact that these reactions are not stereospecific is more consistent with a carbocation intermediate than a concerted bimolecular mechanism... [Pg.343]

A reasonable mechanism for this observation assumes rate determining ionization of the substrate as the first step followed by a hydride shift that converts the secondary carbocation to a more stable tertiary one... [Pg.344]

Both compounds react by an S l mechanism and their relative rates reflect their acti vation energies for carbocation formation Because the allylic chloride is more reactive we reason that it ionizes more rapidly because it forms a more stable carbocation Struc turally the two carbocations differ m that the allylic carbocation has a vinyl substituent on Its positively charged carbon m place of one of the methyl groups of tert butyl cation... [Pg.392]

The carbocation formed on ionization of 1 chloro 3 methyl 2 butene is the same allylic carbocation as the one formed on ionization of 3 chloro 3 methyl 1 butene and gives the same mixture of products... [Pg.394]

Rearrangement is especially prevalent with primary alkyl halides of the type RCH2CH2X and R2CHCH2X Aluminum chloride induces ionization with rearrangement to give a more stable carbocation Benzylic halides and acyl halides do not rearrange... [Pg.511]

Substitution nucleophilic unimolecular(SNl) mechanism (Sec tions 4 9 and 8 8) Mechanism for nucleophilic substitution charactenzed by a two step process The first step is rate determining and is the ionization of an alkyl halide to a carbocation and a halide ion... [Pg.1294]

The ionization mechanism for nucleophilic substitution proceeds by rate-determining heterolytic dissociation of the reactant to a tricoordinate carbocation (also sometimes referred to as a carbonium ion or carbenium ion f and the leaving group. This dissociation is followed by rapid combination of the highly electrophilic carbocation with a Lewis base (nucleophile) present in the medium. A two-dimensional potential energy diagram representing this process for a neutral reactant and anionic nucleophile is shown in Fig. [Pg.264]

Application of Hammond s postulate indicates that the transition state should resemble the product of the first step, the carbocation intermediate. Ionization is facilitated by factors that either lower the energy of the carbocation or raise the energy of the reactant. The rate of ionization depends primarily on how reactant structure and solvent ionizing power affect these energies. [Pg.265]

Ionization reaction rates are subject to both electronic and steric effects. The most important electronic effects are stabilization of the carbocation by electron-releasing... [Pg.265]

Attack by a nucleophile or the solvent can occur at either of the ion pairs. Nucleophilic attack on the intimate ion pair would be expected to occur with inversion of configuration, since the leaving group would still shield the fiont side of the caibocation. At the solvent-separated ion pair stage, the nucleophile might approach fiom either fece, particularly in the case where solvent is the nucleophile. Reactions through dissociated carbocations should occur with complete lacemization. According to this interpretation, the identity and stereochemistry of the reaction products will be determined by the extent to which reaction occurs on the un-ionized reactant, the intimate ion pair, the solvent-separated ion pair, or the dissociated caibocation. [Pg.270]

Jencks has discussed how the gradation from the 8fjl to the 8n2 mechanism is related to the stability and lifetime of the carbocation intermediate, as illustrated in Fig. 5.6. In the 8n 1 mechanism, the carbocation intermediate has a relatively long lifetime and is equilibrated with solvent prior to capture by a nucleophile. The reaction is clearly a stepwise one, and the energy minimxun in which the caibocation mtermediate resides is significant. As the stability of the carbocation decreases, its lifetime becomes shorter. The barrier to capture by a nucleophile becomes less and eventually disappears. This is described as the imcoupled mechanism. Ionization proceeds without nucleophilic... [Pg.273]

Because carbocations are key intermediates in many nucleophilic substitution reactions, it is important to develop a grasp of their structural properties and the effect substituents have on stability. The critical step in the ionization mechanism of nucleophilic substitution is the generation of the tricoordinate carbocation intermediate. For this mechanism to operate, it is essential that this species not be prohibitively high in energy. Carbocations are inherently high-energy species. The ionization of r-butyl chloride is endothermic by 153kcal/mol in the gas phase. ... [Pg.276]

It has been possible to obtain thermodynamic data for the ionization of alkyl chlorides by reaction with SbFs, a Lewis acid, in the nonnucleophilic solvent S02C1F. It has been foimd that the solvation energies of the carbocations in this medium are small and do not differ much from one another, making comparison of the nonisomeric systems possible. As long as subsequent reactions of the carbocation can be avoided, the thermodynamic characteristics of this reaction provide a measure of the relative ease of carbocation formation in solution. [Pg.280]

There is an excellent correlation between these data and the gas-phase data, in terms both of the stability order and the energy differences between carbocations. A plot of the gas-phase hydride affinity versus the ionization enthalpy gives a line of slope 1.63 with a correlation coefficient of 0.973. This result is in agreement with the expectation that the gas-phase stability would be somewhat more sensitive to structure than the solution-phase stability. The energy gap between tertiary and secondary ions is about 17kcal/mol in the gas phase and about 9.5 kcal/mole in the SO2CIF solution. [Pg.280]

A wide range of caibocation stability data has been obtained by measuring the heat of ionization of a series of chlorides and cafbinols in nonnucleophilic solvents in the presence of Lewis acids. Some representative data are given in Table 5.4 These data include the diarylmediyl and triarylmethyl systems for which pX R+ data are available (Table 5.1) and give some basis for comparison of the stabilities of secondary and tertiary alkyl carbocations with those of the more stable aryl-substituted ions. [Pg.281]

Substitution reactions by the ionization mechanism proceed very slowly on a-halo derivatives of ketones, aldehydes, acids, esters, nitriles, and related compounds. As discussed on p. 284, such substituents destabilize a carbocation intermediate. Substitution by the direct displacement mechanism, however, proceed especially readily in these systems. Table S.IS indicates some representative relative rate accelerations. Steric effects be responsible for part of the observed acceleration, since an sfp- caibon, such as in a carbonyl group, will provide less steric resistance to tiie incoming nucleophile than an alkyl group. The major effect is believed to be electronic. The adjacent n-LUMO of the carbonyl group can interact with the electnai density that is built up at the pentacoordinate carbon. This can be described in resonance terminology as a contribution flom an enolate-like stmeture to tiie transition state. In MO terminology,.the low-lying LUMO has a... [Pg.301]

Stabilization of a carbocation intermediate by benzylic conjugation, as in the 1-phenylethyl system shown in entry 8, leads to substitution with diminished stereosped-ficity. A thorough analysis of stereochemical, kinetic, and isotope effect data on solvolysis reactions of 1-phenylethyl chloride has been carried out. The system has been analyzed in terms of the fate of the intimate ion-pair and solvent-separated ion-pair intermediates. From this analysis, it has been estimated that for every 100 molecules of 1-phenylethyl chloride that undergo ionization to an intimate ion pair (in trifluoroethanol), 80 return to starting material of retained configuration, 7 return to inverted starting material, and 13 go on to the solvent-separated ion pair. [Pg.306]

Both acetolyses were considered to proceed by way of a rate-determining formation of a carbocation. The rate of ionization of the ewdo-brosylate was considered normal, because its reactivity was comparable to that of cyclohexyl brosylate. Elaborating on a suggestion made earlier concerning rearrangement of camphene Itydrochloride, Winstein proposed that ionization of the ero-brosylate was assisted by the C(l)—C(6) bonding electrons and led directly to the formation of a nonclassical ion as an intermediate. [Pg.327]

Even though the rearrangements suggest that discrete carbocation intermediates are involved, these reactions frequently show kinetics consistent with the presence of at least two hydrogen chloride molecules in the rate-determining transition state. A termolecular mechanism in which the second Itydrogen chloride molecule assists in the ionization of the electrophile has been suggested. ... [Pg.356]

In the El mechanism, the leaving group has completely ionized before C—H bond breaking occurs. The direction of the elimination therefore depends on the structure of the carbocation and the identity of the base involved in the proton transfer that follows C—X heterolysis. Because of the relatively high energy of the carbocation intermediate, quite weak bases can effect proton removal. The solvent m often serve this function. The counterion formed in the ionization step may also act as the proton acceptor ... [Pg.383]

The acetal might undergo ionization with formation of an alkoxide ion and a carbocation. In a second step, the alkoxide would be protonated. This mechanism is extremely rare, if not impossible, because an alkoxide ion is a poor leaving group. [Pg.454]

All these kinetic results can be accommodated by a general mechanism that incorporates the following fundamental components (1) complexation of the alkylating agent and the Lewis acid (2) electrophilic attack on the aromatic substrate to form the a-complex and (3) deprotonation. In many systems, there m be an ionization of the complex to yield a discrete carbocation. This step accounts for the fact that rearrangement of the alkyl group is frequently observed during Friedel-Crafts alkylation. [Pg.581]

Strong acids or superacid systems generate stable fluorinated carbocations [40, 42] Treatment of tetrafluorobenzbarrelene with arenesulfonyl chlorides in nitro-methane-lithium perchlorate yields a crystalline salt with a rearranged benzo barrelene skeleton [43] Ionization of polycyclic adducts of difluorocarbene and derivatives of bornadiene with antimony pentafluonde in fluorosulfonyl chloride yields stable cations [44, 45]... [Pg.915]


See other pages where Carbocation ionization is mentioned: [Pg.218]    [Pg.218]    [Pg.141]    [Pg.342]    [Pg.346]    [Pg.394]    [Pg.213]    [Pg.267]    [Pg.286]    [Pg.309]    [Pg.315]    [Pg.332]    [Pg.382]    [Pg.453]    [Pg.455]    [Pg.481]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Ionization potentials carbocations

Ionization to carbocations

© 2024 chempedia.info