Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbamates, reaction with acid halides

Compound 211 and several related compounds are readily accessible by stereospecific deprotonation of the appropriate optically active carbamic esters with 5-BuLi/TMEDA ° . Much of the knowledge about the stereochemical course of substitution in benzyUithium derivatives was obtained from experiments with these compounds. Only the reaction with proton acids, aliphatic aldehydes, ketones or esters as electrophiles proceed with retention for alkyl, silyl and stannyl halides, acid chlorides. [Pg.1094]

This chapter deals with the kinetics and mechanisms of the hydrolysis of carboxylic acid derivatives of general formula RCOX. These include carboxylic acid halides, amides, and anhydrides with small sections on carboxylic acid cyanides etc. Many recent developments in this field have been made with acid derivatives in which R is not an aliphatic or aromatic group, for example, carbamic acid derivatives, and these are reported where relevant, as are reactions such as ethanolysis, aminolysis, etc. where they throw light on the mechanisms of hydrolysis. [Pg.209]

Volume 10 is devoted to formation and solvolysis of esters and related reactions, with discussion of the effect of neighbouring groups and biological implications, e.g. enzyme action, where appropriate. The first chapter deals mainly with esters of the inorganic acids of phosphorus and sulphur, Chapter 2 with the formation and solvolysis of esters of organic acids and the final chapter with the solvolysis of related derivatives of carboxylic acids, e.g. halides, amides, anhydrides, cyanides, carbamic acid derivatives. [Pg.319]

A simpler nonphosgene process for the manufacture of isocyanates consists of the reaction of amines with carbon dioxide in the presence of an aprotic organic solvent and a nitrogeneous base. The corresponding ammonium carbamate is treated with a dehydrating agent. This concept has been applied to the synthesis of aromatic and aliphatic isocyanates. The process relies on the facile formation of amine—carbon dioxide salts using acid halides such as phosphoryl chloride [10025-87-3] and thionyl chloride [7719-09-7] (30). [Pg.448]

There are several types of chiral derivatizing reagents commonly used depending on the functional group involved. For amines, the formation of an amide from reaction with an acyl halide [147,148], chloroformate reaction to form a carbamate [149], and reaction with isocyanate to form the corresponding urea are common reactions [150]. Carboxyl groups can be effectively esterified with chiral alcohols [151-153]. Isocynates have been used as reagents for enantiomer separation of amino acids, iV-methylamino acids, and 3-hydroxy acids [154]. In addition to the above-mentioned reactions, many others have been used in the formation of derivatives for use on a variety of packed and capillary columns. For a more comprehensive list, refer to References 155-159. [Pg.58]

By analogy with the general synthesis of imidoyl chlorides it can be expected that carbamates and thiocarbamates undergo reaction with a variety of acid halides to afford 1-haloformimidates and 1-halothio-formimidates, respectively. For example, carbamates have been reacted with carbonyl chloride ( ), pyrocatecholphosphorus trichloride ( ), and phosphorus pentachloride ( ), and isocyanates were obtained. In view of the catalytic effect of N,N-dimethylformamide in the phosgenation of carbamates to isocyanates, the intermediacy of 1-chloroformimidates X is anticipated ( ). [Pg.140]

Subsequently, the Monsanto researchers developed a variation of this activated carbon dioxide chemistry process whereby activated carbamate anions derived from primary amines could be reacted rapidly with electrophilic dehydrating agents, such as acid halides, to produce the corresponding isocyanates in excellent yields, according to the following reaction ... [Pg.63]

When the reagent is the thiocyanate ion, S-alkylation is an important side reaction (10-43), but the cyanate ion practically always gives exclusive N-alkylation. ° Primary alkyl halides have been converted to isocyanates by treatment with sodium nitrocyanamide (NaNCNN02) and m-chloroperoxybenzoic acid, followed by heating of the initially produced RN(N02)CN. ° When alkyl halides are treated with NCO in the presence of ethanol, carbamates can be prepared directly (see 16-7). ° Acyl halides give the corresponding acyl isocyanates and isothiocyanates. For the formation of isocyanides, see 10-111. [Pg.516]

Hudson et a/.156 have shown that N,N-dialkylcarbamates decompose in strongly acidic media to carbon dioxide, olefin, alkyl halide and alcohol, the rate of reaction of the secondary esters closely following h0. This fact, together with the variation in the rate of hydrolysis of carbamates of cyclic alcohols with the ring size154, shows that these reactions involve the intermediate formation of carbonium ions. [Pg.252]

Oxidation-reduction (redox) reactions, along with hydrolysis and acid-base reactions, account for the vast majority of chemical reactions that occur in aquatic environmental systems. Factors that affect redox kinetics include environmental redox conditions, ionic strength, pH-value, temperature, speciation, and sorption (Tratnyek and Macalady, 2000). Sediment and particulate matter in water bodies may influence greatly the efficacy of abiotic transformations by altering the truly dissolved (i.e., non-sorbed) fraction of the compounds — the only fraction available for reactions (Weber and Wolfe, 1987). Among the possible abiotic transformation pathways, hydrolysis has received the most attention, though only some compound classes are potentially hydrolyzable (e.g., alkyl halides, amides, amines, carbamates, esters, epoxides, and nitriles [Harris, 1990 Peijnenburg, 1991]). Current efforts to incorporate reaction kinetics and pathways for reductive transformations into environmental exposure models are due to the fact that many of them result in reaction products that may be of more concern than the parent compounds (Tratnyek et al., 2003). [Pg.324]

Deprotonation of O-alkyl carbamates may be achieved in an enantioselective manner with s-BuLi-(-)-sparteine, and the most effective of these reactions employ the oxazolidinones 411. The related compounds 412 perform similarly, but have less neat NMR spectra. Enantioselective lithiation of 413, followed by carboxylation and methylation with diazomethane, generates the protected a-hydroxy acid 414 in >95% ee.176 Many other electrophiles perform well in the quench step, but not allylic or benzylic halides, which lead to partial racemisation.177 30... [Pg.231]


See other pages where Carbamates, reaction with acid halides is mentioned: [Pg.806]    [Pg.42]    [Pg.173]    [Pg.96]    [Pg.322]    [Pg.197]    [Pg.168]    [Pg.72]    [Pg.266]    [Pg.431]    [Pg.202]    [Pg.96]    [Pg.108]    [Pg.612]    [Pg.197]    [Pg.128]    [Pg.314]    [Pg.62]    [Pg.469]    [Pg.981]    [Pg.253]    [Pg.26]    [Pg.108]    [Pg.218]    [Pg.491]    [Pg.74]    [Pg.55]    [Pg.145]    [Pg.912]    [Pg.1131]    [Pg.1439]   
See also in sourсe #XX -- [ Pg.9 , Pg.140 ]




SEARCH



Acid halides

Acidic halides

Carbamate reaction

Carbamic acid

Reaction with carbamates

With carbamates

© 2024 chempedia.info