Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capture number

There are other less common types of radioactive decay. Positron emission results in a decrease by one unit in the atomic number K capture involves the incorporation of one of the extranuclear electrons into the nucleus, the atomic number is again decreased by one unit. [Pg.339]

Equation (Cl.4.35) yields two remarkable predictions first, tliat tire sub-Doppler friction coefficient can be a big number compared to since at far detuning Aj /T is a big number and second, tliat a p is independent of tire applied field intensity. This last result contrasts sharjDly witli tire Doppler friction coefficient which is proportional to field intensity up to saturation (see equation (C1.4.24). However, even tliough a p looks impressive, tire range of atomic velocities over which is can operate are restricted by tire condition tliat T lcv. The ratio of tire capture velocities for Doppler versus sub-Doppler cooling is tlierefore only uipi/uj 2 Figure Cl. 4.6 illustrates... [Pg.2465]

In favourable contrast to molecular dynamics, BD allows molecular movements of realistically long duration to be simulated. Nevertheless, the practical number of protein molecules which can be simulated is only two since collective phenomena are often of crucial importance in detennining the course of interaction events, other simulation teclmiques, such as cellular automata [115], need to be used to capture the behaviour of large numbers of particles. [Pg.2837]

Fm and heavier isotopes can be produced by intense neutron irradiation of lower elements, such as plutonium, using a process of successive neutron capture interspersed with beta decays until these mass numbers and atomic numbers are reached. [Pg.212]

Several portions of Section 4, Properties of Atoms, Radicals, and Bonds, have been significantly enlarged. For example, the entries under Ionization Energy of Molecular and Radical Species now number 740 and have an additional column with the enthalpy of formation of the ions. Likewise, the table on Electron Affinities of the Elements, Molecules, and Radicals now contains about 225 entries. The Table of Nuclides has material on additional radionuclides, their radiations, and the neutron capture cross sections. [Pg.1283]

In the above examples the size of the chain can be measured by considering the number of automobile collisions that result from the first accident, or the number of fission reactions which follow from the first neutron capture. When we think about the number of monomers that react as a result of a single initiation step, we are led directly to the degree of polymerization of the resulting molecule. In this way the chain mechanism and the properties of the polymer chains are directly related. [Pg.345]

Economic Aspects. In 1994 there were 8 operational insulation board producers in the United States. These mills produced about 1.15 X 10 m (2). The number of mills and total production volume have also decreased in this industry, primarily as a result of changes in building codes and avadabihty of other competitive sheathing products. Both wood composite panels and plastic foam sheathings have captured a segment of these markets. [Pg.386]

It is possible to prepare very heavy elements in thermonuclear explosions, owing to the very intense, although brief (order of a microsecond), neutron flux furnished by the explosion (3,13). Einsteinium and fermium were first produced in this way they were discovered in the fallout materials from the first thermonuclear explosion (the "Mike" shot) staged in the Pacific in November 1952. It is possible that elements having atomic numbers greater than 100 would have been found had the debris been examined very soon after the explosion. The preparative process involved is multiple neutron capture in the uranium in the device, which is followed by a sequence of beta decays. Eor example, the synthesis of EM in the Mike explosion was via the production of from followed by a long chain of short-Hved beta decays,... [Pg.215]

Electrica.1 Properties. The electrical properties of SF stem primarily from its effectiveness as an electron scavenger. To accomplish electrical breakdown in a dielectric gas, primary electrons must gain sufficient energy to generate appreciable numbers of secondary electrons on molecular impact. Sulfur hexafluoride interferes with this process by capturing the primary electrons, resulting in the formation of SF or SF ions and F atoms (29) ... [Pg.241]

Environmental considerations also were reflected in coal production and consumption statistics, including regional production patterns and economic sector utilization characteristics. Average coal sulfur content, as produced, declined from 2.3% in 1973 to 1.6% in 1980 and 1.3% in 1990. Coal ash content declined similarly, from 13.1% in 1973 to 11.1% in 1980 and 9.9% in 1990. These numbers clearly reflect a trend toward utilization of coal that produces less SO2 and less flyash to capture. Emissions from coal in the 1990s were 14 x 10 t /yr of SO2 and 450 x 10 t /yr of particulates generated by coal combustion at electric utiUties. The total coal combustion emissions from all sources were only slightly higher than the emissions from electric utiUty coal utilization (6). [Pg.4]

To calculate electron production must be balanced against electron depletion. Free electrons in the gas can become attached to any of a number of species in a combustion gas which have reasonably large electron affinities and which can readily capture electrons to form negative ions. In a combustion gas, such species include OH (1.83 eV), O (1.46 eV), NO2 (3.68 eV), NO (0.09 eV), and others. Because of its relatively high concentration, its abUity to capture electrons, and thus its abUity to reduce the electrical conductivity of the gas, the most important negative ion is usuaUyOH . [Pg.419]

In the evaluation of these parameters, the chain of plutonium isotopes produced and consumed must be taken into account. Successive neutron captures create plutonium-239, -240, -241, and -242. Isotopes having odd mass number are fissile, the others are not. [Pg.221]

AH of the 15 plutonium isotopes Hsted in Table 3 are synthetic and radioactive (see Radioisotopes). The lighter isotopes decay mainly by K-electron capture, thereby forming neptunium isotopes. With the exception of mass numbers 237 [15411-93-5] 241 [14119-32-5] and 243, the nine intermediate isotopes, ie, 236—244, are transformed into uranium isotopes by a-decay. The heaviest plutonium isotopes tend to undergo P-decay, thereby forming americium. Detailed reviews of the nuclear properties have been pubUshed (18). [Pg.192]

There are four modes of radioactive decay that are common and that are exhibited by the decay of naturally occurring radionucHdes. These four are a-decay, j3 -decay, electron capture and j3 -decay, and isomeric or y-decay. In the first three of these, the atom is changed from one chemical element to another in the fourth, the atom is unchanged. In addition, there are three modes of decay that occur almost exclusively in synthetic radionucHdes. These are spontaneous fission, delayed-proton emission, and delayed-neutron emission. Lasdy, there are two exotic, and very long-Hved, decay modes. These are cluster emission and double P-decay. In all of these processes, the energy, spin and parity, nucleon number, and lepton number are conserved. Methods of measuring the associated radiations are discussed in Reference 2 specific methods for y-rays are discussed in Reference 1. [Pg.448]

Occurrence and Recovery. Rhenium is one of the least abundant of the naturally occurring elements. Various estimates of its abundance in Earth s cmst have been made. The most widely quoted figure is 0.027 atoms pet 10 atoms of silicon (0.05 ppm by wt) (3). However, this number, based on analyses for the most common rocks, ie, granites and basalts, has a high uncertainty. The abundance of rhenium in stony meteorites has been found to be approximately the same value. An average abundance in siderites is 0.5 ppm. In lunar materials, Re, when compared to Re, appears to be enriched by 1.4% to as much as 29%, relative to the terrestrial abundance. This may result from a nuclear reaction sequence beginning with neutron capture by tungsten-186, followed by p-decay of of a half-hfe of 24 h (4) (see Extraterrestrial materials). [Pg.160]

Isotope CAS Registry Number Occurrence, % Thermal neutron capture cross section, 10-" ... [Pg.426]

Lm. The coarseness results from the relatively low power dissipation per mass on distillation trays. This means that it is relatively easy to remove by a device such as a wire mesh pad. Over 50 percent is typically captured by the underside of the next higher tray or by a turn in the piping leaving an evaporator. Conversely, though small on a mass basis, the smaller drops are extremely numerous. On a number basis, more than one-half of the drops in the lower curve are under 5 [Lm. These can sei ve as nuclei for fog condensation in downstream equipment. [Pg.1413]

If the same size particle d is located at an initial starting radius less than r given by Eq. (18-110) it is assumed to escape from being captured by the bowl, whereas it would have been captured if it had been at an initial radius greater than / Assuming that the number of particles with size d is uniformly distributed across the annular pool, the recoveiy Rec (known also as grade efficiency) is the differential of the cumulative recovery Z = 1 — Y, with Y given in Eq. (18-92) for particles with size d, as the ratio of the two annular areas ... [Pg.1734]

There are a number of grim anecdotes about him in wartime thus, at that time he always carried a cyanide capsule for the eventuality of his capture, and when a fellow professor asked him to find him one too, he responded This poison is for professors of chemistry only. You, as a professor of mechanics, will have to use the rope . [Pg.126]

This mechanism explains the observed formation of the more highly substituted alcohol from unsymmetrical alkenes (Markownikoff s rule). A number of other points must be considered in order to provide a more complete picture of the mechanism. Is the protonation step reversible Is there a discrete carbocation intermediate, or does the nucleophile become involved before proton transfer is complete Can other reactions of the carbocation, such as rearrangement, compete with capture by water ... [Pg.358]


See other pages where Capture number is mentioned: [Pg.354]    [Pg.116]    [Pg.354]    [Pg.116]    [Pg.146]    [Pg.2186]    [Pg.2363]    [Pg.2368]    [Pg.89]    [Pg.566]    [Pg.716]    [Pg.1282]    [Pg.22]    [Pg.167]    [Pg.215]    [Pg.393]    [Pg.134]    [Pg.116]    [Pg.52]    [Pg.455]    [Pg.219]    [Pg.275]    [Pg.2141]    [Pg.47]    [Pg.203]    [Pg.226]    [Pg.51]    [Pg.432]    [Pg.432]    [Pg.490]    [Pg.88]    [Pg.239]   
See also in sourсe #XX -- [ Pg.354 ]




SEARCH



© 2024 chempedia.info