Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capacity catalyst

Feed product Consumption/production capacity Catalyst system used... [Pg.591]

Activity-versus-time curves shown in Fig. 25 for alumina-supported Ni and Ni bimetallic catalysts show two significant facts (1) the exponential decay for each of the curves is characteristic of nonuniform pore-mouth poisoning, and (2) the rate at which activity declines varies considerably with metal loading, surface area, and composition. Because of large differences in metal surface area (i.e., sulfur capacity), catalysts cannot be compared directly unless these differences are taken into account. There are basically two ways to do this (1) for monometallic catalysts normalize time in terms of sulfur coverage or the number of H2S molecules passed over the catalysts per active metal site (161,194), and (2) for mono- or bimetallic catalysts compare values of the deactivation rate constant calculated from a poisoning model (113, 195). [Pg.212]

Specific heat capacity Catalyst bulk density Total pressure Inlet conditions Molar mass of the inflow Reactor diameter and length Heat transfer parameter Temperature of the cooling agent Temperature of the inflow... [Pg.425]

Others (Nunez-lsaza et al., 2000 Sun et al., 2001 Valverde et al., 2008) report content of metals deposited on the catalyst as nonfresh basis, and do not change the analysis to fresh basis. This is clearly deduced from the reported results since Mo content is not the same in both fresh and spent catalysts, and it must be equal if the analysis has been changed to fresh basis. Their conclusions may not change actually however, values of MOC or even the ranking of the best metal retention capacity catalyst may be different. [Pg.495]

Most, if not all, of the acetonitrile that was produced commercially in the United States in 1995 was isolated as a by-product from the manufacture of acrylonitrile by propylene ammoxidation. The amount of acetonitrile produced in an acrylonitrile plant depends on the ammoxidation catalyst that is used, but the ratio of acetonitrile acrylonitrile usually is ca 2—3 100. The acetonitrile is recovered as the water azeotrope, dried, and purified by distillation (28). U.S. capacity (1994) is ca 23,000 t/yr. [Pg.219]

Liquid- and vapor-phase processes have been described the latter appear to be advantageous. Supported cadmium, zinc, or mercury salts are used as catalysts. In 1963 it was estimated that 85% of U.S. vinyl acetate capacity was based on acetylene, but it has been completely replaced since about 1982 by newer technology using oxidative addition of acetic acid to ethylene (2) (see Vinyl polymers). In western Europe production of vinyl acetate from acetylene stiU remains a significant commercial route. [Pg.102]

The acetic anhydride process employs a homogeneous rhodium catalyst system for reaction of carbon monoxide with methyl acetate (36). The plant has capacity to coproduce approximately 545,000 t/yr of acetic anhydride, and 150,000 t/yr of acetic acid. One of the many challenges faced in operation of this plant is recovery of the expensive rhodium metal catalyst. Without a high recovery of the catalyst metal, the process would be uneconomical to operate. [Pg.167]

Fluoroaliphatic Thermolytic Routes. The reaction of diduorocarbene (generated from CHCIF2 at 600°C) with cyclopentadiene to give duoroben2ene (70% yield) has been scaled up in a pilot-plant/semiworks faciUty (capacity = several dozen t/yr) (77,78). The same process can now be effected under Hquid-phase conditions in the presence of phase-transfer catalysts (79,80). [Pg.319]

A typical catalyst bed is very shallow (10 to 50 mm) (76,77). In some plants the catalyst is contained in numerous small parallel reactors in others, catalyst-bed diameters up to 1.7 and 2.0 m (77,80) and capacities of up to 135,000 t/yr per reactor are reported (78). The silver catalyst has a useful life of three to eight months and can be recovered. It is easily poisoned by traces of transition group metals and by sulfur. [Pg.493]

Oxidation of methanol to formaldehyde with vanadium pentoxide catalyst was first patented in 1921 (90), followed in 1933 by a patent for an iron oxide—molybdenum oxide catalyst (91), which is stiU the choice in the 1990s. Catalysts are improved by modification with small amounts of other metal oxides (92), support on inert carriers (93), and methods of preparation (94,95) and activation (96). In 1952, the first commercial plant using an iron—molybdenum oxide catalyst was put into operation (97). It is estimated that 70% of the new formaldehyde installed capacity is the metal oxide process (98). [Pg.494]

During World War II, nine commercial plants were operated in Germany, five using the normal pressure synthesis, two the medium pressure process, and two having converters of both types. The largest plants had capacities of ca 400 mr / d (2500 bbl/d) of Hquid products. Cobalt catalysts were used exclusively. [Pg.80]

Synthetic phenol capacity in the United States was reported to be ca 1.6 x 10 t/yr in 1989 (206), almost completely based on the cumene process (see Cumene Phenol). Some synthetic phenol [108-95-2] is made from toluene by a process developed by The Dow Chemical Company (2,299—301). Toluene [108-88-3] is oxidized to benzoic acid in a conventional LPO process. Liquid-phase oxidative decarboxylation with a copper-containing catalyst gives phenol in high yield (2,299—304). The phenoHc hydroxyl group is located ortho to the position previously occupied by the carboxyl group of benzoic acid (2,299,301,305). This provides a means to produce meta-substituted phenols otherwise difficult to make (2,306). VPOs for the oxidative decarboxylation of benzoic acid have also been reported (2,307—309). Although the mechanism appears to be similar to the LPO scheme (309), the VPO reaction is reported not to work for toluic acids (310). [Pg.345]

Pre-Keformer A pre-reformer is based on the concept of shifting reforming duty away from the direct-fired reformer, thereby reducing the duty of the latter. The pre-reformer usually occurs at about 500°C inlet over an adiabatic fixed bed of special reforming catalyst, such as sulfated nickel, and uses heat recovered from the convection section of the reformer. The process may be attractive in case of plant retrofits to increase reforming capacity or in cases where the feedsock contains heavier components. [Pg.421]

Steam Reformings of Natural Gas. This route accounts for at least 80% of the world s methanol capacity. A steam reformer is essentially a process furnace in which the endothermic heat of reaction is provided by firing across tubes filled with a nickel-based catalyst through which the reactants flow. Several mechanical variants are available (see Ammonia). [Pg.276]

High density polyethylene (HDPE) is defined by ASTM D1248-84 as a product of ethylene polymerisation with a density of 0.940 g/cm or higher. This range includes both homopolymers of ethylene and its copolymers with small amounts of a-olefins. The first commercial processes for HDPE manufacture were developed in the early 1950s and utilised a variety of transition-metal polymerisation catalysts based on molybdenum (1), chromium (2,3), and titanium (4). Commercial production of HDPE was started in 1956 in the United States by Phillips Petroleum Company and in Europe by Hoechst (5). HDPE is one of the largest volume commodity plastics produced in the world, with a worldwide capacity in 1994 of over 14 x 10 t/yr and a 32% share of the total polyethylene production. [Pg.379]

The search for catalyst systems which could effect the 0x0 reaction under milder conditions and produce higher yields of the desired aldehyde resulted in processes utilizing rhodium. Oxo capacity built since the mid-1970s, both in the United States and elsewhere, has largely employed tertiary phosphine-modified rhodium catalysts. For example, over 50% of the world s butyraldehyde (qv) is produced by the LP Oxo process, technology Hcensed by Union Carbide Corporation and Davy Process Technology. [Pg.465]

Company (plant location) Products Capacity, t X 10 /vr Catalyst... [Pg.472]

Activated carbon of high absorptive capacity is suitable for use as a catalyst it need not be treated with metallic salt or other substances. If starting materials of high purity are employed, excellent and economic catalyst efficiency is obtained. [Pg.313]


See other pages where Capacity catalyst is mentioned: [Pg.78]    [Pg.424]    [Pg.72]    [Pg.78]    [Pg.424]    [Pg.72]    [Pg.2776]    [Pg.339]    [Pg.873]    [Pg.72]    [Pg.184]    [Pg.78]    [Pg.88]    [Pg.49]    [Pg.164]    [Pg.295]    [Pg.80]    [Pg.190]    [Pg.342]    [Pg.274]    [Pg.453]    [Pg.252]    [Pg.275]    [Pg.454]    [Pg.454]    [Pg.14]    [Pg.42]    [Pg.57]    [Pg.384]    [Pg.407]    [Pg.411]    [Pg.415]    [Pg.440]    [Pg.131]   


SEARCH



© 2024 chempedia.info