Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium chloride potassium carbonate

Sodium nitrate + sodium sulfate Sodium nitrate + calcium chloride Potassium carbonate + retarder Calcium nitrate + sodium sulfate... [Pg.317]

Methylene dichloride is prepared by chlorination of methane and thus contains chloroform and carbon tetrachloride as impurities. Water can be removed by drying over sodium sulfate, calcium chloride, potassium carbonate, or phosphoric oxide. Further purification can be achieved by prior washing with, successively, water, concentrated sulfuric acid, water, sodium hydroxide solution, and again water. [Pg.1096]

Experiment 28. — Place on a piece of glass or in an evaporating dish a small piece of calcium chloride, potassium hydroxide, sodium hydroxide, and potassium carbonate, and leave them exposed to the air for an hour or more. Describe any marked change which takes place. How does the action differ from that in Exp. 27 Where and why was this property of calcium chloride utilized ... [Pg.69]

Aluminum calcium silicate Ammonium polyphosphate Calcium aluminate Calcium hydroxide Calcium sulfite Candelilla synthetic Collodion Copal resin Elemi gum Epoxy resin Feldspar Gelatin Magnesium chloride Potassium carbonate Shellac Zirconium silicate cement additive... [Pg.4949]

The acid is an oily colorless liquid that is easily soluble in water, ethanol, and ether, and can be separated from an aqueous phase by saturation with salts such as calcium chloride. Potassium dichromate and sulfuric acid oxidize it to carbon dioxide and acetic acid, while... [Pg.75]

The chloroform is shaken two or three times with a small volume (say, 5 per cent.) of concentrated sulphuric acid, thoroughly washed with water, dried over anhydrous calcium chloride or anhydrous potassium carbonate, and distilled. [Pg.176]

Place 50 g. of anhydrous calcium chloride and 260 g. (323 ml.) of rectified spirit (95 per cent, ethyl alcohol) in a 1-litre narrow neck bottle, and cool the mixture to 8° or below by immersion in ice water. Introduce slowly 125 g. (155 ml.) of freshly distilled acetaldehyde, b.p. 20-22° (Section 111,65) down the sides of the bottle so that it forms a layer on the alcoholic solution. Close the bottle with a tightly fitting cork and shake vigorously for 3-4 minutes a considerable rise in temperature occurs so that the stopper must be held well down to prevent the volatilisation of the acetaldehyde. Allow the stoppered bottle to stand for 24-30 hours with intermittent shaking. (After 1-2 hours the mixture separates into two layers.) Separate the upper layer ca. 320 g.) and wash it three times with 80 ml. portions of water. Dry for several hours over 6 g. of anhydrous potassium carbonate and fractionate with an efficient column (compare Section 11,17). Collect the fraction, b.p. 101-104°, as pure acetal. The yield is 200 g. [Pg.327]

The distillate contains alcohol, toluene and water, and may be dried with anhydrous potassium carbonate and used again for esterification after the addition of the necessary quantity of alcohol alternatively, the toluene may be recovered by washing with water, drying with anhydrous calcium chloride or anhydrous magnesium sulphate, and distiUing. [Pg.386]

Separate the ketone layer from the water, and redistil the lattCT rmtil about one third of the material has passed over. Remove the ketone after salting out any dissolved ketone with potassium carbonate (5). Wash the combined ketone fractions four times with one third the volume of 35-40 per cent, calcium chloride solution in order to remove the alcohol. Dry over 15 g. of anhydrous calcium chloride it is best to shake in a separatory funnel with 1-2 g. of the anhydrous calcium chloride, remove the saturated solution of calcium chloride as formed, and then allow to stand over 10 g. of calcium chloride in a dry flask. Filter and distil. Collect the methyl n-butyl ketone at 126-128°. The yield is 71 g. [Pg.482]

Alternatively, use the following procedure in which triethylamine replaces potassium acetate as the basic catalyst. Place 2 1 g. (2-0 ml.) of purified benzaldehyde, 2 0 ml. of anhydrous triethylamine and 5 0 ml. of A.R. acetic anhydride in a 200 ml. round-bottomed flask, equipped with a short reflux condenser and a calcium chloride drying tube. Boil the solution gently for 24 hours—heating may be interrupted. Incorporate a steam distillation apparatus in the flask and steam distil until the distillate is no longer cloudy (about 100 ml.) and then collect a further 50 ml. of the distillate di ard the steam distillate. Transfer the residue in the flask to a 400 ml. beaker, add water until the vplume is about 200 ml., then 0 2 g. of decolourising carbon, and boil for a few minutes. Filter the hot solution, and acidify the hot filtrate with 1 1 hydrochlorioiaoid... [Pg.1113]

Ion Selective Electrodes Technique. Ion selective (ISE) methods, based on a direct potentiometric technique (7) (see Electroanalytical techniques), are routinely used in clinical chemistry to measure pH, sodium, potassium, carbon dioxide, calcium, lithium, and chloride levels in biological fluids. [Pg.395]

The main metals in brines throughout the world are sodium, magnesium, calcium, and potassium. Other metals, such as lithium and boron, are found in lesser amounts. The main nonmetals ate chloride, sulfate, and carbonate, with nitrate occurring in a few isolated areas. A significant fraction of sodium nitrate and potassium nitrate comes from these isolated deposits. Other nonmetals produced from brine ate bromine and iodine. [Pg.406]

Ion-selective electrodes are available for the electro analysis of most small anions, eg, haUdes, sulfide, carbonate, nitrate, etc, and cations, eg, lithium, sodium, potassium, hydrogen, magnesium, calcium, etc, but having varying degrees of selectivity. The most successful uses of these electrodes involve process monitoring, eg, for pH, where precision beyond the unstable reference electrode s abiUty to deUver is not generally required, and for clinical apphcations, eg, sodium, potassium, chloride, and carbonate in blood, urine, and semm. [Pg.56]

The palladium on carbon catalysts should be dried at room temperature or the carbon may ignite. These catalysts are first dried in air and then over potassium hydroxide (or calcium chloride) in a desiccator. [Pg.81]

Magnesium sulfate, potassium carbonate, sodium sulfate. Calcium chloride, c cium sulfate, magnesium sulfate, sodium, lithium aluminium hydride. [Pg.43]

The most common impurities are the corresponding acid and hydroxy compound (i.e. alcohol or phenol), and water. A liquid ester from a carboxylic acid is washed with 2N sodium carbonate or sodium hydroxide to remove acid material, then shaken with calcium chloride to remove ethyl or methyl alcohols (if it is a methyl or ethyl ester). It is dried with potassium carbonate or magnesium sulfate, and distilled. Fractional distillation then removes residual traces of hydroxy compounds. This method does not apply to esters of inorganic acids (e.g. dimethyl sulfate) which are more readily hydrolysed in aqueous solution when heat is generated in the neutralisation of the excess acid. In such cases, several fractional distillations, preferably under vacuum, are usually sufficient. [Pg.64]

To the solution is added 900 ml. of water, and the resulting mixture is washed with four 500-ml. portions of ether. The ether layers are combined and washed with 200 ml. of aqueous 10% potassium carbonate and then twice with 200-ml. portions of water (Note 9). The ether layer is dried for 1 hour over 200 g. of anhydrous calcium chloride (Note 10) and the solvent is removed on a rotary evaporator at room temperature to give 145-158 g. of crude product (Note 11). Distillation under reduced pressure through a Vigreux column gives 115-128 g. of a fraction, b.p. 83-86° (54 mm.), w22 d 1.4620-1.4640, containing 95% of l-bromo-3-methyl-2-butanone as established by proton magnetic resonance measurements (Note 11). [Pg.24]


See other pages where Calcium chloride potassium carbonate is mentioned: [Pg.56]    [Pg.56]    [Pg.784]    [Pg.793]    [Pg.23]    [Pg.784]    [Pg.793]    [Pg.9]    [Pg.472]    [Pg.79]    [Pg.176]    [Pg.256]    [Pg.257]    [Pg.259]    [Pg.281]    [Pg.384]    [Pg.517]    [Pg.606]    [Pg.712]    [Pg.858]    [Pg.892]    [Pg.950]    [Pg.963]    [Pg.274]    [Pg.183]    [Pg.477]    [Pg.8]    [Pg.45]    [Pg.325]    [Pg.56]    [Pg.38]    [Pg.63]    [Pg.64]    [Pg.88]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Calcium carbonate

Calcium carbonate, chloride

Calcium chloride

Calcium potassium

Chloride carbonation

Potassium carbonate

Potassium carbonate chloride

Potassium chlorid

© 2024 chempedia.info