Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium channel blockers effects

Primary drug Secondary drug CALCIUM CHANNEL BLOCKERS Effect Mechanism Precautions... [Pg.78]

The interactions of cimetidine with diltiazem and nifedipine are established. Concurrent use need not be avoided but the increase in the calcium-channel blocker effects should be taken into account. It has been suggested that the dosage of diltiazem should be reduced by 30 to 50% " and that of nifedipine by 40 to 50%. " The interaction between verapamil and cimetidine is not well established, but monitor the effects until more is known. It has been suggested that the verapamil dose may need to be reduced by 50%. Monitoring is advised if isradipine is given with cimetidine and a reduction in isradipine dose may be required. ... [Pg.871]

Other agents are also used for the treatment of manic-depressive disorders based on preliminary clinical results (177). The antiepileptic carbamazepine [298-46-4] has been reported in some clinical studies to be therapeutically beneficial in mild-to-moderate manic depression. Carbamazepine treatment is used especially in bipolar patients intolerant to lithium or nonresponders. A majority of Hthium-resistant, rapidly cycling manic-depressive patients were reported in one study to improve on carbamazepine (178). Carbamazepine blocks noradrenaline reuptake and inhibits noradrenaline exocytosis. The main adverse events are those found commonly with antiepileptics, ie, vigilance problems, nystagmus, ataxia, and anemia, in addition to nausea, diarrhea, or constipation. Carbamazepine can be used in combination with lithium. Several clinical studies report that the calcium channel blocker verapamil [52-53-9] registered for angina pectoris and supraventricular arrhythmias, may also be effective in the treatment of acute mania. Its use as a mood stabilizer may be unrelated to its calcium-blocking properties. Verapamil also decreases the activity of several neurotransmitters. Severe manic depression is often treated with antipsychotics or benzodiazepine anxiolytics. [Pg.233]

The electrophysiological effects of amiodarone may be a composite of several properties. In addition to prolonging action potential duration and refractory period in ad tissues of the heart, the compound is an effective sodium channel blocker (49), calcium channel blocker (50), and a weak noncompetitive -adrenoceptor blocking agent (51). Amiodarone slows the sinus rate, markedly prolongs the QT interval, and slightly prolongs the QRS duration (1,2). [Pg.121]

Verapamil. Verapamil hydrochloride is a pbenyl alkyl amine and is considered the prototype of the Class I calcium channel blockers. Verapamil is also a potent inhibitor of coronary artery spasm and is useful in Prinzmetal s angina and in unstable angina at rest. Verapamil produces negative chronotropic and inotropic effects. These two actions reduce myocardial oxygen consumption and probably account for the effectiveness of verapamil in chronic stable effort angina (98,99). Moreover, verapamil is an effective antihypertensive agent. [Pg.126]

ACE inhibitors can be administered with diuretics (qv), cardiac glycosides, -adrenoceptor blockers, and calcium channel blockers. Clinical trials indicate they are generally free from serious side effects. The effectiveness of enalapril, another ACE inhibitor, in preventing patient mortaUty in severe (Class IV) heart failure was investigated. In combination with conventional dmgs such as vasodilators and diuretics, a 40% reduction in mortaUty was observed after six months of treatment using 2.5—40 mg/d of enalapril (141). However, patients complain of cough, and occasionally rash and taste disturbances can occur. [Pg.129]

Calcium Channel Blockers. Because accumulation of calcium is one of the facets of the mote involved process leading to atherosclerosis, it would foUow that the antihypertensive calcium channel blockers might be effective in preventing atheroma. Both verapamil (Table 1) and nifedipine (Table 3) have been shown to stimulate the low density Upoprotein (LDL) receptor (159). This specific receptor-mediated pathway could theoretically improve Upid metaboUsm in the arterial wall, and thereby prove antiatherogenic. These effects have been proven in animals. [Pg.131]

Patients having high plasma renin activity (PRA) (>8 ng/(mLh)) respond best to an ACE inhibitor or a -adrenoceptor blocker those having low PRA (<1 ng/(mLh)) usually elderly and black, respond best to a calcium channel blocker or a diuretic (184). -Adrenoceptor blockers should not be used in patients who have diabetes, asthma, bradycardia, or peripheral vascular diseases. The thiazide-type diuretics (qv) should be used with caution in patients having diabetes. Likewise, -adrenoceptor blockers should not be combined with verapamil or diltiazem because these dmgs slow the atrioventricular nodal conduction in the heart. Calcium channel blockers are preferred in patients having coronary insufficiency diseases because of the cardioprotective effects of these dmgs. [Pg.132]

In addition to the vascular effects, calcium channel blockers (Table 6) such as isradipine, nifedipine (Table 3), and nitrendipine, produce natriuretic... [Pg.141]

Calcium channel blockers cause more pronounced lowering of blood pressure in hypertensive patients than in normotensive individuals. Generally, all calcium channel blockers cause an immediate increase in PRA during acute treatment in patients having hypertension but PRA is normalized during chronic treatment despite the sustained decrease in blood pressure. These agents also do not generally produce sodium and water retention, unlike the conventional vasodilators. This is because they produce diuretic effects by direct actions on the kidney. [Pg.142]

In the treatment of hypertension, ACE inhibitors are as effective as diuretics, (3-adrenoceptor antagonists, or calcium channel blockers in lowering blood pressure. However, increased survival rates have only been demonstrated for diuretics and (3-adrenoceptor antagonists. ACE inhibitors are approved for monotherapy as well as for combinational regimes. ACE inhibitors are the dtugs of choice for the treatment of hypertension with renal diseases, particularly diabetic nephropathy, because they prevent the progression of renal failure and improve proteinuria more efficiently than the other diugs. [Pg.10]

Systemic and coronary arteries are influenced by movement of calcium across cell membranes of vascular smooth muscle. The contractions of cardiac and vascular smooth muscle depend on movement of extracellular calcium ions into these walls through specific ion channels. Calcium channel blockers, such as amlodipine (Norvasc), diltiazem (Cardizem), nicardipine (Cardene), nifedipine (Procardia), and verapamil (Calan), inhibit die movement of calcium ions across cell membranes. This results in less calcium available for the transmission of nerve impulses (Fig. 41-1). This drug action of the calcium channel blockers (also known as slow channel blockers) has several effects on die heart, including an effect on die smooth muscle of arteries and arterioles. These drug dilate coronary arteries and arterioles, which in turn deliver more oxygen to cardiac muscle. Dilation of peripheral arteries reduces die workload of die heart. The end effect of these drug is the same as that of die nitrates. [Pg.381]

If die nitrates are administered witii the antihypertensives, alcohol, calcium channel blockers, or the phe-notiiiazines, there may be an increased hypotensive effect. When nitroglycerin is administered intravenously (IV), die effects of heparin may be decreased. Increased nitrate serum concentrations may occur when the nitrates are administered witii aspirin. [Pg.384]

D. discontinue use of the calcium channel blocker until die hypotensive effects diminish... [Pg.392]

Other drugs such as the neuroleptic, haloperidol, inhibit the induction of hsp70 mRNA in rodent neurons (Sharp et al.. 1992). Although this observation needs to be confirmed in the human population, it raises the possibility that an age-dependent defect in the production of HS proteins is exacerbated by a drug which is commonly used in demented elderly patients. The potential for certain pharmacologic agents to inhibit the HS response could increase the risk for untoward effects of atherosclerosis and hypoxia. A similar concern may be raised with certain calcium channel blockers which also have been found to reduce the synthesis of HS proteins in cardiac myocytes (Low-Friedrich and Schoeppe, 1991). [Pg.447]

Low-Friedrich, I. Schoeppe, W. (1991). Effects of calcium channel blockers on stress protein synthesis in cardiac myocytes. J. Cardiovasc. Pharmacol. 17,800-806. [Pg.457]

Although there is no evidence that the neuronal degeneration of AzD results, as in cardiovascular ischaemia, from the excitotoxicity of increased intracellular Ca +, some calcium channel blockers have been tried in AzD. They have had little effect but surprisingly a pyrrolidone derivative nefiracetam, which opens L-type voltage-sensitive calcium channels (VSCCs) reduces both scopolamine- and )S-amyloid-induced impairments of learning and memory in rats (Yamada et al. 1999). This effect can be overcome by VSCC antagonists, but nefiracetam has not been tried in humans. [Pg.392]

Patients with asymptomatic left ventricular systolic dysfunction and hypertension should be treated with P-blockers and ACE inhibitors. Those with heart failure secondary to left ventricular dysfunction and hypertension should be treated with drugs proven to also reduce the morbidity and mortality of heart failure, including P-blockers, ACE inhibitors, ARBs, aldosterone antagonists, and diuretics for symptom control as well as antihypertensive effect. In African-Americans with heart failure and left ventricular systolic dysfunction, combination therapy with nitrates and hydralazine not only affords a morbidity and mortality benefit, but may also be useful as antihypertensive therapy if needed.66 The dihydropyridine calcium channel blockers amlodipine or felodipine may also be used in patients with heart failure and left ventricular systolic dysfunction for uncontrolled blood pressure, although they have no effect on heart failure morbidity and mortality in these patients.49 For patients with heart failure and preserved ejection fraction, antihypertensive therapies that should be considered include P-blockers, ACE inhibitors, ARBs, calcium channel blockers (including nondihydropyridine agents), diuretics, and others as needed to control blood pressure.2,49... [Pg.27]

Treatment with nondihydropyridine calcium channel blockers (diltiazem and verapamil) may worsen HF and increase the risk of death in patients with advanced LV dysfunction due to their negative inotropic effects. Conversely, dihydropyridine calcium channel blockers, although negative inotropes in vitro, do not appear to decrease contractility in vivo. Amlodipine and felodipine are the two most extensively studied dihydropyridine calcium channel blockers for systolic H F.39 4() These two agents have not been shown to affect patient survival, either positively or negatively. As such, they are not routinely recommended as part of a standard HF regimen however, amlodipine and felodipine can safely be used... [Pg.50]

In randomized, controlled, clinical trials, calcium channel blockers were as effective as p-blockers at preventing ischemic symptoms. Calcium channel blockers are recommended as initial treatment in IHD when /3-blockers are contraindicated or not tolerated. In addition, CCBs may be used in combination with /3-blockers when initial treatment is unsuccessful. However, the combination of a (1-blocker with either verapamil or diltiazem should be used with extreme caution since all of these drugs decrease AV nodal conduction, increasing the risk for severe bradycardia or AV block when used together. If combination therapy is warranted, a long-acting dihydropyridine CCB is preferred. (3-Blockers will prevent reflex increases in sympathetic tone and heart rate with the use of calcium channel blockers with potent vasodilatory effects. [Pg.78]


See other pages where Calcium channel blockers effects is mentioned: [Pg.93]    [Pg.273]    [Pg.126]    [Pg.126]    [Pg.132]    [Pg.140]    [Pg.140]    [Pg.140]    [Pg.142]    [Pg.144]    [Pg.384]    [Pg.386]    [Pg.504]    [Pg.504]    [Pg.257]    [Pg.169]    [Pg.292]    [Pg.465]    [Pg.424]    [Pg.334]    [Pg.27]    [Pg.51]    [Pg.71]    [Pg.71]    [Pg.75]    [Pg.76]    [Pg.77]    [Pg.78]    [Pg.78]    [Pg.79]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Calcium blockers

Calcium channel blockers

Calcium channels

Channel blockers

Channel effect

Channeling effects

Channelling effects

© 2024 chempedia.info