Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Caffein

C8H10N4O2. An alkaloid occurring in tea, coffee and guarana, from which it may be prepared by extraction, It is also manufactured by the methylation of theobromine and by the condensation of cyanoacetic acid with urea. Crystallizes with H2O or anhydrous from organic solvents. M.p. (anhydrous) 235"C, sublimes at 176 C. Odourless, and with a very bitter taste. Caffeine acts as a stimulant and diuretic, and is a constituent of cola drinks, tea and coffee. [Pg.75]

C7H9N402- M.p. 337 C, an alkaloid obtained from cacao seeds or prepared synthetically. Constitutionally it is similar to caffeine, and is also a weak base. It is usually administered as the sodium compound combined with either sodium ethanoate or sodium salicylate, and is employed almost entirely as a diuretic. Physiologically theobromine resembles caffeine, but its effect on the central nervous system is less, while its action on the kidneys, is more pronounced. [Pg.392]

C7HgN402. Occurs to a small extent in tea, but is chiefly prepared synthetically. Like caffeine, it is a very weak base which forms water-soluble compounds with alkalis. It has a similar pharmacological mechanism to that of caffeine and is used, in combination with ethy-lenediamine. as a diuretic and a bron-chodilator. [Pg.392]

XXVI, 2nd 1965 3794-4187 Four cyclic nitrogens, 321 Xanthine, 447. Caffeine, 461. Uric acid, 613. [Pg.1125]

The nucleophilicity of the nitrogen atom survives in many different functional groups, although its basicity may be lost. Reactions of non-basic, but nucleophilic urea nitrogens provide, for example, an easy entry to sleeping-pills (barbiturates) as well as to stimulants (caffeine). The nitrogen atoms of imidazoles and indole anions are also nucleophilic and the NH protons can be easily substituted. [Pg.306]

Pyrimidines and purines occur naturally in substances other than nucleic acids Coffee for example is a familiar source of caffeine Tea contains both caffeine and theobromine... [Pg.1158]

Classify caffeine and theobromine according to whether each is... [Pg.1158]

Caffeine and theobromine are both purines Caffeine lacks H—N—C=0 units so cannot enobze Two consitutionally isomenc enols are possible for theobromine... [Pg.1256]

This publication provides several examples of the use of solid-phase extractions for separating analytes from their matrices. Some of the examples included are caffeine from coffee, polyaromatic hydrocarbons from water, parabens from cosmetics, chlorinated pesticides from water, and steroids from hydrocortisone creams. Extracted analytes maybe determined quantitatively by gas (GC) or liquid chromatography (LG). [Pg.226]

Yang, M. J. Orton, M. L. Pawliszyn, J. Quantitative Determination of Caffeine in Beverages Using a Combined SPME-GC/MS Method, /. Chem. Educ. 1997, 74,... [Pg.226]

Caffeine is extracted from beverages by a solid-phase microextraction using an uncoated fused silica fiber. The fiber is suspended in the sample for 5 min and the sample stirred to assist the mass transfer of analyte to the fiber. Immediately after removing the fiber from the sample it is transferred to the gas chromatograph s injection port where the analyte is thermally desorbed. Quantitation is accomplished by using a C3 caffeine solution as an internal standard. [Pg.226]

Many pharmaceutical compounds are weak acids or bases that can be analyzed by an aqueous or nonaqueous acid-base titration examples include salicylic acid, phenobarbital, caffeine, and sulfanilamide. Amino acids and proteins can be analyzed in glacial acetic acid, using HCIO4 as the titrant. For example, a procedure for determining the amount of nutritionally available protein has been developed that is based on an acid-base titration of lysine residues. ... [Pg.303]

Procedures for determining the concentrations of caffeine, benzoic acid and aspartame in soda by these three methods are provided. In the example provided in this paper, the concentrations of caffeine and benzoic acid in Mello Yellow are determined spectrophotometrically. [Pg.447]

The analysis of APC tablets (a mixture of aspirin, phenacetin, and caffeine) has been a common undergraduate laboratory experiment. This experiment describes modifications to the standard analysis for APC tablets in which paracetamol (also known as acetaminophen) replaces phenacetin. [Pg.448]

Examples of the application of HPLC to the analysis of (a) acetaminophen, salicylic acid, and caffeine (b) chlorinated pesticides (c) tricyclic antidepressants and (d) peptides. (Chromatograms courtesy of Alltech Associates, Inc. Deerfield, IL). [Pg.587]

Caffeine in coffee, tea, and soda is determined by a solid-phase microextraction using an uncoated silica fiber, followed by a GC analysis using a capillary SPB-5 column with an MS detector. Standard solutions are spiked with G3 caffeine as an internal standard. [Pg.612]

The concentrations of benzoic acid, aspartame, caffeine, and saccharin in a variety of beverages are determined in this experiment. A Gig column and a mobile phase of 80% v/v acetic acid (pH = 4.2) and 20% v/v methanol are used to effect the separation. A UV detector set to 254 nm is used to measure the eluent s absorbance. The ability to adjust retention times by changing the mobile phase s pH is also explored. [Pg.612]

The concentration of caffeine in a typical serving of coffee and soda is determined in this experiment. Separations are achieved using a Gjg column with a mobile phase of 30% v/v methanol in water, with UV detection at a wavelength of 254 nm. [Pg.612]

This experiment focuses on developing an HPLG separation capable of distinguishing acetylsalicylic acid, paracetamol, salicylamide, caffeine, and phenacetin. A Gjg column and UV detection are used to obtain chromatograms. Solvent parameters used to optimize the separation include the pH of the buffered aqueous mobile phase, the %v/v methanol added to the aqueous mobile phase, and the use of tetrabutylammonium phosphate as an ion-pairing reagent. [Pg.612]

Conte, E. D. Barry, E. E. Rubinstein, H. Determination of Caffeine in Beverages by Capillary Zone Electrophoresis, ... [Pg.614]

Caffeine in tea and coffee is determined by CZE using nicotine as an internal standard. The buffer solution is 50 mM sodium borate adjusted to pH 8.5 with H3PO4. A UV detector set to 214 nm is used to record the electropherograms. [Pg.614]

Caffeine, benzoic acid, and aspartame in soft drinks are analyzed by three methods. Using several methods to analyze the same sample provides students with the opportunity to compare results with respect to accuracy, volume of sample required, ease of performance, sample throughput, and detection limit. [Pg.614]

Students determine the concentrations of caffeine, acetaminophen, acetylsalicylic acid, and salicylic acid in several analgesic preparations using both CZE (70 mM borate buffer solution, UV detection at 210 nm) and HPLC (C18 column with 3% v/v acetic acid mixed with methanol as a mobile phase, UV detection at 254 nm). [Pg.614]

Haddad and associates report the following capacity factors for the reverse-phase separation of salicylamide (k i) and caffeine... [Pg.617]

Suppose that you are to separate a mixture of benzoic acid, aspartame, and caffeine in a diet soda. The following information is available to you. [Pg.617]

The amount of caffeine in an analgesic tablet was determined by HPLC using a normal calibration curve. Standard solutions of caffeine were prepared and analyzed using a lO-pL fixed-volume injection loop. Results for the standards are summarized in the following table. [Pg.617]

Diet soft drinks contain appreciable quantities of aspartame, benzoic acid, and caffeine. What is the expected order of elution for these compounds in a capillary zone electrophoresis separation using a pH 9.4 buffer solution, given that aspartame has pJC values of 2.964 and 7.37, benzoic acid s pfQ is 4.2, and the pfQ for caffeine is less than 0. [Pg.619]


See other pages where Caffein is mentioned: [Pg.21]    [Pg.75]    [Pg.333]    [Pg.306]    [Pg.861]    [Pg.213]    [Pg.302]    [Pg.430]    [Pg.452]    [Pg.452]    [Pg.452]    [Pg.538]    [Pg.587]    [Pg.587]    [Pg.612]    [Pg.617]    [Pg.618]    [Pg.618]    [Pg.766]    [Pg.766]   
See also in sourсe #XX -- [ Pg.71 ]

See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Caffeine

Caffeinism

© 2024 chempedia.info