Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,3-Butadiene acidity

As a selective solvent for acetylene, butadiene, acid gases, inorganic salts and certain constituents of petroleum. [Pg.398]

Use Solvent for vinyl resins and acetylene, butadiene, acid gases poly acrylic fibers catalyst in car-boxylation reactions organic synthesis carrier for gases. [Pg.448]

MAJOR USES Industrial solvent for vinyl resins, butadiene, acid gases, polyacrylic fibers used in the production of polymer fibers, films, surface coatings, wire enamels eatalyst in carboxylation reactions crystallization medium in pharmaceutical industry. [Pg.86]

Hazardous Decomp. Prods. On decomp., emits toxic fumes of NO, NEPA Health 1, Flammability 2, Reactivity 0 Storage Store In cool, dry, well-ventilated area, out of direct sunlight Uses Solvent for llqs., gases. In vinyl resins, acetylene, butadiene, acid gases, paints, paint strippers, cleaners, zinc electroplating, acrylic fiber spinning, pharmaceuticals mfg. of polyacrylic fibers, butadiene. [Pg.1085]

Acrylonitrile-butadiene/acidic monomer, an elastomeric copolymer... [Pg.2174]

It appears that carboxyl-modification is necessary for bonding polymer latexes through amine-functional silanes. A series of experimental styrene-butadiene-acid terpolymers were compared as film formers and primers with 5% added Z-6020 (Table V). Difunctional acids gave the most stable mixes, but poorest water resistance. Polymers with acrylic acid modification were best primers for plaster. Alkylmaleate modified polymers had poor stability with silane, and deposited rubbery films with poor wet adhesion to glass. [Pg.123]

CH2 CH C CH. Colourless gas with a sweet odour b.p. 5°C. Manufactured by the controlled low-temperature telomerization of ethyne in the presence of an aqueous solution of CuCI and NH Cl. Reduced by hydrogen to butadiene and, finally, butane. Reacts with water in the presence of HgSO to give methyl vinyl ketone. Forms salts. Forms 2-chloro-butadiene (chloroprene) with hydrochloric acid and certain metallic chlorides. [Pg.266]

Anhydi ous pinacol (I) is catalytically decomposed by aqueous hydrobromic acid into dimethyl butadiene (II) and pinacoloiie (III) separation is effected by distillation through an efficient fractionating column ... [Pg.467]

Thermal electrocyclizations of perhalogenated 1,3-butadienes yield perhalogenated cyclobutenes which can be solvolysed to 3,4-dihydroxy-3-cydobutene-l,2-dione ( squaric acid") and its derivatives (G. Maahs, 1966 H. Knorr, 1978 A.H. Schmidt, 1978). Double CO extrusion from fused cyclobutenediones has been used to produce cycloalkynes, e.g., benzyne from benzocyclobutenedione by irradiation in an argon matrix (O.L. Chapman, 1973) and cyc/o-Ci8, cyclo-Cn, etc. by laser desorption mass spectroscopy of appropriate precursors (see section 4.9.8). [Pg.78]

Aryl- or alkenylpalladium comple.xcs can be generated in situ by the trans-metallation of the aryl- or alkenylmercury compounds 386 or 389 with Pd(Il) (see Section 6). These species react with 1,3-cydohexadiene via the formation of the TT-allylpalladium intermediate 387, which is attacked intramolecularlv by the amide or carboxylate group, and the 1,2-difunctionalization takes place to give 388 and 390[322]. Similarly, the ort/trt-thallation of benzoic acid followed by transmetallation with Pd(II) forms the arylpalladium complex, which reacts with butadiene to afford the isocoumarin 391, achieving the 1,2-difunctionalization of butadiene[323]. [Pg.73]

The 3-alkyi-1,3-butadiene-2-carboxylate (2-vinylacrylate) 850 is obtained in a high yield by the carbonylation of the 2-alkyl-2,3-butadienyl carbonate 849 under mild conditions (room temperature, atm)[522]. The corresponding acids are obtained in moderate yields by the carbonylation of 2,3-alkadienyl alcohols under severe conditions (100 °C, 20 atm) using a cationic Pd catalyst and p-TsOH[523],... [Pg.405]

Carboxylic acids react with butadiene as alkali metal carboxylates. A mixture of isomeric 1- and 3-acetoxyoctadienes (39 and 40) is formed by the reaction of acetic acid[13]. The reaction is very slow in acetic acid alone. It is accelerated by forming acetate by the addition of a base[40]. Addition of an equal amount of triethylamine achieved complete conversion at 80 C after 2 h. AcONa or AcOK also can be used as a base. Trimethylolpropane phosphite (TMPP) completely eliminates the formation of 1,3,7-octatriene, and the acetoxyocta-dienes 39 and 40 are obtained in 81% and 9% yields by using N.N.N M -tetramethyl-l,3-diaminobutane at 50 in a 2 h reaction. These two isomers undergo Pd-catalyzed allylic rearrangement with each other. [Pg.429]

Formic acid behaves differently. The expected octadienyl formate is not formed. The reaction of butadiene carried out in formic acid and triethylamine affords 1,7-octadiene (41) as the major product and 1,6-octadiene as a minor product[41-43], Formic acid is a hydride source. It is known that the Pd hydride formed from palladium formate attacks the substituted side of tt-allylpalladium to form the terminal alkene[44] (see Section 2.8). The reductive dimerization of isoprene in formic acid in the presence of Et3N using tri(i)-tolyl)phosphine at room temperature afforded a mixture of dimers in 87% yield, which contained 71% of the head-to-tail dimers 42a and 42b. The mixture was treated with concentrated HCl to give an easily separable chloro derivative 43. By this means, a- and d-citronellol (44 and 45) were pre-pared[45]. [Pg.430]

Active methylene or methine compounds, to which two EWGs such as carbonyl, alko.xycarbonyl, formyl, cyano, nitro, and sulfonyl groups are attached, react with butadiene smoothly and their acidic hydrogens are displaced with the 2,7-octadienyl group to give mono- and disubstituted compounds[59]. 3-Substituted 1,7-octadienes are obtained as minor products. The reaction is earned out with a /3-keto ester, /9-diketone, malonate, Q-formyl ketones, a-cyano and Q-nitro esters, cya noacetamide, and phenylsulfonylacetate. Di(octadienyl)malonate (61) obtained by this reaction is converted into an... [Pg.432]

Simple ketones and esters are inert. On the other hand, nitroalkanes react smoothly in r-butyl alcohol as a solvent with butadiene, and their acidic hydrogens are displaced with the octadienyl group. From nitromethane, three products, 64, 65, and 66, are formed, accompanied by 3-substituted 1,7-octadiene as a minor product. Hydrogenation of 65 affords a fatty amine 67 which has a primary amino function at the center of the long linear chain[46,61]. [Pg.433]

Carbonyiation of butadiene gives two different products depending on the catalytic species. When PdCl is used in ethanol, ethyl 3-pentenoate (91) is obtained[87,88]. Further carbonyiation of 3-pentenoate catalyzed by cobalt carbonyl affords adipate 92[89], 3-Pentenoate is also obtained in the presence of acid. On the other hand, with catalysis by Pd(OAc)2 and Ph3P, methyl 3,8-nonadienoate (93) is obtained by dimerization-carbonylation[90,91]. The presence of chloride ion firmly attached to Pd makes the difference. The reaction is slow, and higher catalytic activity was observed by using Pd(OAc) , (/-Pr) ,P, and maleic anhydride[92]. Carbonyiation of isoprcne with either PdCi or Pd(OAc)2 and Ph,P gives only the 4-methyl-3-pentenoate 94[93]. [Pg.437]

Phenyl-1,4-hcxadicnc (122) is obtained as a major product by the codimerization of butadiene and styrene in the presence of a Lewis acid[110]. Pd(0)-catalyzed addition reaction of butadiene and aiiene (1 2) proceeds at 120 C to give a 3 1 mixture of trans- and c -2-methyl-3-methylene-l,5.7-octatriene (123)[lll]. [Pg.441]

The telomer 137, obtained by the reaction of butadiene with malonate, is a suitable compound for the syntheses of naturally occurring dodecanoic acid derivatives, such as queen substance (I38)[l 7], one of the royal jelly acids (139)[I18], and pellitorine fl40)[ll9]. [Pg.444]

Recall from Section 7 13 that a stereospecific reaction is one in which each stereoiso mer of a particular starting material yields a different stereoisomeric form of the reaction product In the ex amples shown the product from Diels-Alder cycloaddi tion of 1 3 butadiene to as cinnamic acid is a stereo isomer of the product from trans cinnamic acid Each product although chiral is formed as a racemic mixture... [Pg.410]

Poly(chlorotrifluoroethylene) (PCTFE) Butadiene-maleic acid copolymer (BMC)... [Pg.1010]

Mercury(II) oxide Chlorine, hydrazine hydrate, hydrogen peroxide, hypophosphorous acid, magnesium, phosphorus, sulfur, butadiene, hydrocarbons, methanethiol... [Pg.1209]

Phenol Butadiene, peroxodisulfuric acid, peroxosulfuric acid, aluminum chloride plus nitrobenzene... [Pg.1211]

Adiponitrile is made commercially by several different processes utilizing different feedstocks. The original process, utilizing adipic acid (qv) as a feedstock, was first commercialized by DuPont in the late 1930s and was the basis for a number of adiponitrile plants. However, the adipic acid process was abandoned by DuPont in favor of two processes based on butadiene (qv). During the 1960s, Monsanto and Asahi developed routes to adiponitrile by the electrodimerization of acrylonitrile (qv). [Pg.220]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

The labile hydroxyl group is easily replaced by treatment with thionyl chloride, phosphorous chlorides, or even aqueous hydrogen haUdes. At low temperatures aqueous hydrochloric (186) or hydrobromic (187) acids give good yields of 3-halo-3-methyl-l-butynes. At higher temperatures these rearrange, first to l-halo-3-methyl-1,2-butadienes, then to the corresponding 1,3-butadienes (188,189). [Pg.112]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

It has been known since the early 1950s that butadiene reacts with CO to form aldehydes and ketones that could be treated further to give adipic acid (131). Processes for producing adipic acid from butadiene and carbon monoxide [630-08-0] have been explored since around 1970 by a number of companies, especially ARCO, Asahi, BASF, British Petroleum, Du Pont, Monsanto, and Shell. BASF has developed a process sufficiendy advanced to consider commercialization (132). There are two main variations, one a carboalkoxylation and the other a hydrocarboxylation. These differ in whether an alcohol, such as methanol [67-56-1is used to produce intermediate pentenoates (133), or water is used for the production of intermediate pentenoic acids (134). The former is a two-step process which uses high pressure, >31 MPa (306 atm), and moderate temperatures (100—150°C) (132—135). Butadiene,... [Pg.244]


See other pages where 1,3-Butadiene acidity is mentioned: [Pg.546]    [Pg.546]    [Pg.230]    [Pg.1425]    [Pg.125]    [Pg.37]    [Pg.71]    [Pg.222]    [Pg.347]    [Pg.943]    [Pg.209]    [Pg.250]    [Pg.381]    [Pg.433]    [Pg.440]    [Pg.240]   
See also in sourсe #XX -- [ Pg.735 , Pg.736 ]

See also in sourсe #XX -- [ Pg.735 , Pg.736 ]




SEARCH



1.3- Butadiene-2,3-dicarboxylic acid

1.3- Butadiene-2,3-dicarboxylic acid synthesis

1.3- Butadiene-2,3-dicarboxylic acid via retro Diels-Alder reaction

Acetic acid telomerization, with butadiene

Acrylic acid Acrylonitrile/butadiene/styrene polymer

Acrylic acid Butadiene

Adipic acid from butadiene

Butadiene acid from

Butadiene methacrylic acid

Butadiene-1-carboxylic acid

Butadiene-2,3-acid

Butadiene-2,3-dicarboxylic acid, derivatives

Butadiene-acrylonitrile-methacrylic acid-terpolymer

Butadiene-l-carboxylic acid

Butadiene-maleic acid copolymer

Butadiene-maleic acid copolymer properties

Methacrylic acid copolymers, styrene-butadiene

Methacrylic acid-butadiene copolymer

Telomerization of Butadiene with C—H-Acidic Compounds

© 2024 chempedia.info