Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion bulk processes

Kinetics of chemical reactions at liquid interfaces has often proven difficult to study because they include processes that occur on a variety of time scales [1]. The reactions depend on diffusion of reactants to the interface prior to reaction and diffusion of products away from the interface after the reaction. As a result, relatively little information about the interface dependent kinetic step can be gleaned because this step is usually faster than diffusion. This often leads to diffusion controlled interfacial rates. While often not the rate-determining step in interfacial chemical reactions, the dynamics at the interface still play an important and interesting role in interfacial chemical processes. Chemists interested in interfacial kinetics have devised a variety of complex reaction vessels to eliminate diffusion effects systematically and access the interfacial kinetics. However, deconvolution of two slow bulk diffusion processes to access the desired the fast interfacial kinetics, especially ultrafast processes, is generally not an effective way to measure the fast interfacial dynamics. Thus, methodology to probe the interface specifically has been developed. [Pg.404]

Benito et al. [15] have investigated, in unusual detail, the texture of the CaO formed in the decomposition of CaCOj, to determine the role of CO2 in promoting diminution of the surface area of the initially highly divided oxide product. At low pressures, CO2 catalyses the decrease in CaO surface area to about 90 m g. Further coarsening proceeds by grain boundaiy and bulk diffusion processes. [Pg.547]

The bulk diffusion processes within the pores of catalyst particles are usually described by the Wilke model formulation. The extended Wilke equation for diffusion in porous media reads ... [Pg.307]

The low apparent activation energy of the Bi-Sn solder indicated that grain (or phase) boundary diffusion was the predominant creep mechanism for this alloy. On the other hand, the high apparent activation energy of the Sn-Cu solder implied that creep was controlled by bulk diffusion processes. [Pg.101]

The above estimates of pressure variations suggest that their magni-tude as a percentage of the absolute pressure may not be very large except near the limit of Knudsen diffusion. But in porous catalysts, as we have seen, the diffusion processes to be modeled often lie in the Intermediate range between Knudsen streaming and bulk diffusion control. It is therefore tempting to try to simplify the flux equations in such a way as to... [Pg.132]

Dj IE, ratio of a crack is held constant but the dimensions approach molecular dimensions, the crack becomes more retentive. At room temperature, gaseous molecules can enter such a crack direcdy and by two-dimensional diffusion processes. The amount of work necessary to remove completely the water from the pores of an artificial 2eohte can be as high as 400 kj/mol (95.6 kcal/mol). The reason is that the water molecule can make up to six H-bond attachments to the walls of a pore when the pore size is only slightly larger. In comparison, the heat of vaporization of bulk water is 42 kJ /mol (10 kcal/mol), and the heat of desorption of submonolayer water molecules on a plane, soHd substrate is up to 59 kJ/mol (14.1 kcal/mol). The heat of desorption appears as a exponential in the equation correlating desorption rate and temperature (see Molecularsieves). [Pg.369]

Concentration and temperature differences are reduced by bulk flow or circulation in a vessel. Fluid regions of different composition or temperature are reduced in thickness by bulk motion in which velocity gradients exist. This process is called bulk diffusion or Taylor diffusion (Brodkey, in Uhl and Gray, op. cit., vol. 1, p. 48). The turbulent and molecular diffusion reduces the difference between these regions. In laminar flow, Taylor diffusion and molecular diffusion are the mechanisms of concentration- and temperature-difference reduction. [Pg.1629]

So far, few of the commercially operated diffusion processes have been applied to the lower-melting-point metals. While they are being used to an increasing extent for protection of nickel, cobalt and refractory alloys, the bulk of present-day applications is still concerned with the treatment of ferrous materials. [Pg.396]

The characteristic feature of solid—solid reactions which controls, to some extent, the methods which can be applied to the investigation of their kinetics, is that the continuation of product formation requires the transportation of one or both reactants to a zone of interaction, perhaps through a coherent barrier layer of the product phase or as a monomolec-ular layer across surfaces. Since diffusion at phase boundaries may occur at temperatures appreciably below those required for bulk diffusion, the initial step in product formation may be rapidly completed on the attainment of reaction temperature. In such systems, there is no initial delay during nucleation and the initial processes, perhaps involving monomolec-ular films, are not readily identified. The subsequent growth of the product phase, the main reaction, is thereafter controlled by the diffusion of one or more species through the barrier layer. Microscopic observation is of little value where the phases present cannot be unambiguously identified and X-ray diffraction techniques are more fruitful. More recently, the considerable potential of electron microprobe analyses has been developed and exploited. [Pg.37]

The role of bulk diffusion in controlling reaction rates is expected to be significant during surface (catalytic-type) processes for which transportation of the bulk participant is slow (see reactions of sulphides below) or for which the boundary and desorption steps are fast. Diffusion may, for example, control the rate of Ni3C hydrogenation which is much more rapid than the vacuum decomposition of this solid. [Pg.156]

While it is inherently probable that product formation will be most readily initiated at sites of effective contact between reactants (A IB), it is improbable that this process alone is capable of permitting continued product formation at low temperature for two related reasons. Firstly (as discussed in detail in Sect. 2.1.1) the area available for chemical contact in a mixture of particles is a very small fraction of the total surface (and, indeed, this total surface constitutes only a small proportion of the reactant present). Secondly, bulk diffusion across a barrier layer is usually an activated process, so that interposition of product between the points of initial contact reduces the ease, and therefore the rate, of interaction. On completion of the first step in the reaction, the restricted zones of direct contact have undergone chemical modification and the continuation of reaction necessitates a transport process to maintain the migration of material from one solid to a reactive surface of the other. On increasing the temperature, surface migration usually becomes appreciable at temperatures significantly below those required for the onset of bulk diffusion within a product phase. It is to be expected that components of the less refractory constituent will migrate onto the surfaces of the other solid present. These ions are chemisorbed as the first step in product formation and, in a subsequent process, penetrate the outer layers of the... [Pg.254]

The maintenance of product formation, after loss of direct contact between reactants by the interposition of a layer of product, requires the mobility of at least one component and rates are often controlled by diffusion of one or more reactant across the barrier constituted by the product layer. Reaction rates of such processes are characteristically strongly deceleratory since nucleation is effectively instantaneous and the rate of product formation is determined by bulk diffusion from one interface to another across a product zone of progressively increasing thickness. Rate measurements can be simplified by preparation of the reactant in a controlled geometric shape, such as pressing together flat discs at a common planar surface that then constitutes the initial reaction interface. Control by diffusion in one dimension results in obedience to the... [Pg.286]

Example 10.6 A commercial process for the dehydrogenation of ethylbenzene uses 3-mm spherical catalyst particles. The rate constant is 15s , and the diffusivity of ethylbenzene in steam is 4x 10 m /s under reaction conditions. Assume that the pore diameter is large enough that this bulk diffusivity applies. Determine a likely lower bound for the isothermal effectiveness factor. [Pg.364]

Diffusion of the fluid into the bulk. Rates of diffusion are governed by Pick s laws, which involve concentration gradient and are quantified by the diffusion coefficient D these are differential equations that can be integrated to meet many kinds of boundary conditions applying to different diffusive processes. ... [Pg.635]

The results of this study show (99) the involvement of fragments such as Cr(CO) , (3 < jc < 6) which react with CO molecules which come from any of several sources fragmentation of the original molecules, bulk radiolysis of the compound, application of an external atmosphere, or perhaps from intermolecular exchange. It was concluded from the data that diffusion processes are involved and that the relative rates of reaction and of diffusion away are important in determining the height of the annealing plateaus. [Pg.228]

When a hydrophobic polymer with a physically dispersed acidic excipient is placed into an aqueous environment, water will diffuse into the polymer, dissolving the acidic excipient, and consequently the lowered pH will accelerate hydrolysis of the ortho ester bonds. The process is shown schematically in Fig. 6 (18). It is clear that the erosional behavior of the device will be determined by the relative movements of the hydration front Vj and that of the erosion front V2- If Vj > V2, the thickness of the reaction zone will gradually increase and at some point the matrix will be completely permeated with water, thus leading to an eventual bulk erosion process. On the other hand, if V2 = Vj, a surface erosion process wiU take place, and the rate of polymer erosion will be completely determined by the rate at which water intrudes into the matrix. [Pg.132]

Several differences from that of an integrated circuit can be noted. First of all, two (2) electrlced contacts must be established across the bulk of the silicon wafer. When light strikes the surface of the solcU cell, its absorption within the silicon bulk releases electrons which are collected as a current. Also shown is the p-n junction. However, the actual silicon disc is only about 350 pm. in thickness. Diffusion processes are used, as a matter of practicality, to form both the p-layer and the n-layer. Thus, the... [Pg.347]

Hence the top grid pattern is usualty widely spaced but not the extent that the electrical contact layer will have difficulty in collecting the current produced by the cell s other active layer. Cleau ly, the silicon disc needs to be heated as well during the process to aid the diffusion process. Note that the surface will be rieh in diffusing species and that the density of species declines within the interior What happens is that once the ion contacts the silicon surface, it "hops from site to site into the interior of the bulk of the silicon matrix. [Pg.350]

Electrode reactions are heterogeneous since they occur at interfaces between dissimilar phases. During current flow the surface concentrations Cg j of the substances involved in the reaction change relative to the initial (bulk) concentrations Cy p Hence, the value of the equilibrium potential is defined by the Nemst equation changes, and a special type of polarization arises where the shift of electrode potential is due to a change in equilibrium potential of the electrode. The surface concentrations that are established are determined by the balance between electrode reaction rates and the supply or elimination of each substance by diffusion [Eq. (4.9)]. Hence, this type of polarization, is called diffusional concentration polarization or simply concentration polarization. (Here we must take into account that another type of concentration polarization exists which is not tied to diffusion processes see Section 13.5.)... [Pg.81]


See other pages where Diffusion bulk processes is mentioned: [Pg.182]    [Pg.210]    [Pg.510]    [Pg.147]    [Pg.550]    [Pg.181]    [Pg.182]    [Pg.126]    [Pg.4780]    [Pg.158]    [Pg.210]    [Pg.72]    [Pg.182]    [Pg.210]    [Pg.510]    [Pg.147]    [Pg.550]    [Pg.181]    [Pg.182]    [Pg.126]    [Pg.4780]    [Pg.158]    [Pg.210]    [Pg.72]    [Pg.257]    [Pg.258]    [Pg.384]    [Pg.188]    [Pg.190]    [Pg.228]    [Pg.247]    [Pg.306]    [Pg.1039]    [Pg.65]    [Pg.247]    [Pg.258]    [Pg.1005]    [Pg.82]    [Pg.102]    [Pg.349]    [Pg.158]    [Pg.1005]    [Pg.95]   


SEARCH



Bulk process

Diffusion process

Diffusivity, bulk

© 2024 chempedia.info