Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis, buffer

Figure 3. Time course of oligo(y-ethyTL-glutamate) synthesis and change in pH during oligo(y-ethyl L-glutamate) synthesis for the control (0.9M) and reactions in 0.5, 0.9 and 1.3Mphosphate buffer. Synthesis was performed at 40 °C in 0.9M phosphate buffer at pH 7 under non-controlled pH conditions. Values reported are the mean from at least duplicate experiments and error bars define the maximum and minimum values obtained. (Reproduced from reference 22. Copyright 2006 American Chemical Society.)... Figure 3. Time course of oligo(y-ethyTL-glutamate) synthesis and change in pH during oligo(y-ethyl L-glutamate) synthesis for the control (0.9M) and reactions in 0.5, 0.9 and 1.3Mphosphate buffer. Synthesis was performed at 40 °C in 0.9M phosphate buffer at pH 7 under non-controlled pH conditions. Values reported are the mean from at least duplicate experiments and error bars define the maximum and minimum values obtained. (Reproduced from reference 22. Copyright 2006 American Chemical Society.)...
Nitromethane. The nitroparaffins are used widely as raw materials for synthesis. Nitromethane is used to produce the nitro alcohol (qv) 2-(hydroxymethyl)-2-nitro-l,3-propanediol, which is a registered biocide useful for control of bacteria in a number of industrial processes. This nitro alcohol also serves as the raw material for the production of the alkanolamine (qv) 2-amino-2-(hydroxymethyl)-l,3-propanediol, which is an important buffering agent useful in a number of pharmaceutical appHcations. [Pg.104]

A second synthesis of cobyric acid (14) involves photochemical ring closure of an A—D secocorrinoid. Thus, the Diels-Alder reaction between butadiene and /n j -3-methyl-4-oxopentenoic acid was used as starting point for all four ring A—D synthons (15—18). These were combined in the order B + C — BC + D — BCD + A — ABCD. The resultant cadmium complex (19) was photocyclized in buffered acetic acid to give the metal-free corrinoid (20). A number of steps were involved in converting this material to cobyric acid (14). [Pg.117]

Dica.rboxyIic AcidMonoesters. Enzymatic synthesis of monoesters of dicarboxyUc acids by hydrolysis of the corresponding diesters is a widely used and thoroughly studied reaction. It is catalyzed by a number of esterases. Upases, and proteases and is usually carried out in an aqueous buffer, pH 6—8 at room temperature. Organic cosolvents may be added to increase solubiUty of the substrates. The pH is maintained at a constant level by the addition of aqueous hydroxide. After one equivalent of base is consumed the monoesters are isolated by conventional means. [Pg.332]

Oxytocin [50-56-6] M 1007.2, m dec on heating, [a] -26.2"(c 0.53, N AcOH). A cyclic nonapeptide which was purified by countercurrent distribution between solvent and buffer. It is soluble in H2O, rt-BuOH and isoBuOH. [Bodanszky and du Vigneaud J Am Chem Soc 81 2504 1959 Cash et al. J Med Pharm Chem 5 413 1962 Sakakibara et al. Bull Chem Soc Jpn 38 120 1965 solid phase synthesis Bayer and... [Pg.554]

Schopf and Lehmann found that lobelanine could be synthesised by keeping at 25° a mixture of glutardialdehyde, methylamine hydrochloride and benzoylacetic acid in a buffered solution. The best yield was obtained at pH 4-5, and appeared to be complete in forty hours. At pH 7 or 9, 11 or 13, the yield was very small. This synthesis under physiological conditions is represented as occurring in accordance with the following scheme —... [Pg.26]

The bromination of 4,5-j -dihydrocortisone acetate in buffered acetic acid does not proceed very cleanly (<70%) and, in an attempt to improve this step in the cortisone synthesis, Holysz ° investigated the use of dimethylformamide (DMF) as a solvent for bromination. Improved yields were obtained (although in retrospect the homogeneity and structural assignments of some products seem questionable.) It was also observed that the combination of certain metal halides, particularly lithium chloride and bromide in hot DMF was specially effective in dehydrobromination of 4-bromodihydrocortisone acetate. Other amide solvents such as dimethylacetamide (DMA) and A-formylpiperidine can be used in place of DMF. It became apparent later that this method of dehydrobromination is also prone to produce isomeric unsaturated ketones. When applied to 2,4-dibromo-3-ketones, a substantial amount of the A -isomer is formed. [Pg.290]

The ready reduction of iodohydrins is utilized in the Cornforth reaction for preparing olefins from epoxides. Here the opening and reduction are carried out in one step by treatment of the epoxide, in an acetic acid-sodium acetate buffer, with sodium iodide and zinc. A less common use of iodohy-drin reduction is illustrated in the synthesis of the diene (127) ... [Pg.342]

A detailed procedure for the use of MCPBA recently appeared in Reagents for Organic Synthesis by Fieser and Fieser. The commercially available MCPBA (Aldrich) is 85% pure the contaminant, m-chlorobenzoic acid, can be removed by washing with a phosphate buffer of pH 7.5. The epoxidation is usually performed as follows a solution of 3 -acetoxy-5a-androst-16-ene (2.06 g, 6.53 mmoles) in 25 ml of chloroform (or methylene dichloride) is chilled to 0° in a flask fitted with a condenser and drierite tube and treated with a solution of commercial MCPBA (1.74 g, 20% excess) in 25 ml chloroform precooled to the same temperature. The mixture is stirred and allowed to warm to room temperature. After 23 hr (or until TLC shows reaction is complete) the solution is diluted with 100 ml chloroform and washed in sequence with 100 ml of 10% sodium sulfite or sodium iodide followed by sodium thiosulfate, 200 ml of 1 M sodium bicarbonate and 200 ml water. The chloroform extract is dried (MgS04) and evaporated in vacuo to a volume of ca. 10 ml. Addition of methanol (10 ml) followed by cooling of the mixture to —10° yields 0.8 gof 16a,17a-epoxide mp 109.5-110°. Additional product can be obtained by concentration of the mother liquor (total yield 80-90%). [Pg.19]

A more difficult criterion to meet with flow markers is that the polymer samples not contain interferents that coelute with or very near the flow marker and either affect its retention time or the ability of the analyst to reproducibly identify the retention time of the peak. Water is a ubiquitous problem in nonaqueous GPC and, when using a refractive index detector, it can cause a variable magnitude, negative area peak that may coelute with certain choices of totally permeated flow markers. This variable area negative peak may alter the apparent position of the flow marker when the flow rate has actually been invariant, thereby causing the user to falsely adjust data to compensate for the flow error. Similar problems can occur with the elution of positive peaks that are not exactly identical in elution to the totally permeated flow marker. Species that often contribute to these problems are residual monomer, reactants, surfactants, by-products, or buffers from the synthesis of the polymer. [Pg.549]

That the methyl group in the less substituted isomer of the enamine (20) is axial was borne out by the work of Johnson et al. (18) in the total synthesis of the glutarimide antibiotic //-dehydrocycloheximide (24). The acylation of the morpholine enamine of 2,4-dimethylcyclohexanone (25) with 3-glutarimidylacetylchloride (26), followed by the hydrolysis of the intermediate product (27) with an acid buffer, led to the desired product in 35 % yield. The formation of the product in a rather low yield could most probably be ascribed to the relatively low enamine-type aetivity exhibited by the tetrasubstituted isomer, which fails to undergo the acylation reaction, and also because in trisubstituted isomer one of the CHj groups is axial. Since the methyl groups in the product are trans to each other, the allylic methyl group in the less substituted isomer of the enamine should then be in the axial orientation. [Pg.10]

In order to obtain good yields from a Weiss reaction sequence, the H+-concentration has to be adjusted properly in the reaction mixture. The reaction is usually carried out in a buffered, weakly acidic or weakly basic solution. By the Weiss reaction simple starting materials are converted into a complex product of defined stereochemistry. There is no simpler procedure for the synthesis of the l,5-c -disubstituted bicyclo[3.3.0]octane skeleton it has for example found application in the synthesis of polyquinanes. ... [Pg.289]

TheNef reaction of primary nitro compounds gives iildehydes or carboxylic acids, depending on the reaction conditions. Each transformation provides an important tool in organic synthesis. Primary nitro compotmds are converted into carboxylic acids vrith concentrated mineriil acids. Because such harsh conditions iilso lead to side reactions, a milder method is required inorganic synthesis. Basic phosphate-buffered KMnO rapidly converts primary nitroalkanes into carboxylic acids in 90-99% yield fEq. 6.13. "... [Pg.162]

In some cases, impurities in the ionic liquids resulted in dramatic pH shifts, causing enzyme inactivation. This could sometimes be overcome simply by titration or higher buffer concentrations. In other cases, purification of the ionic liquid or an improved synthesis might be necessary. [Pg.338]

The melting point Tm and kinetics are independent of pH and of the salt concentration. This was found by studies in 1% aqueous acetic acid, pH 3.0 as well as in 50 mM phosphate buffer, pH 7.5). Recently, Greiche and Heidemann23 described the synthesis... [Pg.192]

A substrate is a substance that is the basic component of an organism. Protein substrates are amino acids, which are essential to life Protein substrates are amino acid preparations that act to promote the production of proteins (anabolism). Amino acids are necessary to promote synthesis of structural components, reduce the rate of protein breakdown (catabolism), promote wound healing, and act as buffers in the extracellular and intracellular fluids. Crystalline amino acid preparations are hypertonic solutions of balanced essential and nonessential amino acid concentrations that provide substrates for protein synthesis or act to conserve existing body protein. [Pg.634]

Oxidation of phenyl hexyl sulphide with sodium metaperiodate gave also only a trace amount of the corresponding sulphoxide72. On the other hand, Hall and coworkers73 prepared benzylpenicillin and phenoxymethyl penicillin sulphoxides from the corresponding benzyl esters by oxidation with sodium metaperiodate in dioxane solution with a phosphate buffer. A general procedure for the synthesis of penicillin sulphoxides was reported later by Essery and coworkers74 which consists in the direct oxidation of penicillins or their salts with sodium metaperiodate in aqueous solution at pH 6.5-7.0. 1-Butadienyl phenyl sulphoxide 4475 and a-phosphoryl sulphoxides 4576 were also prepared by the same procedure. [Pg.246]

An extract from the soluble stromal proteins of purified and intact spinach-leaf chloroplasts was prepared by lysis of the cells in buffer, centrifugation of the suspension of broken cells, and concentration of the supernatant with removal of insoluble material. This extract contained all of the enzymes involved in the condensation of the cyclic moieties of thiamine, thiazole, and pyramine. Thus, the synthesis of thiamine in this extract following the addition of pyramine and putative precursors was a proof that the system had the possibility of building the thiazole. It was found that L-tyrosine was the donor of the C-2 carbon atom of thiazole, as in E. coli. Also, as in E. coli cells, addition of 1 -deoxy-D-f/irco-pen-tulose permitted synthesis of the thiamine structure. The relevant enzymes were localized by gel filtration in a fraction covering the 50- to 350-kDa molecular-mass range. This fraction was able to catalyze the formation of the thiazole moiety of thiamine from 0.1 -mM 1-deoxy-D-t/ireo-pentulose at the rate of 220 pmol per mg of protein per hour, in the presence of ATP and Mg2+. [Pg.277]

Another approach for the synthesis of enantiopure amino acids or amino alcohols is the enantioselective enzyme-catalyzed hydrolysis of hydantoins. As discussed above, hydantoins are very easily racemized in weak alkaline solutions via keto enol tautomerism. Sugai et al. have reported the DKR of the hydantoin prepared from DL-phenylalanine. DKR took place smoothly by the use of D-hydantoinase at a pH of 9 employing a borate buffer (Figure 4.17) [42]. [Pg.101]

The antiviral agent virantmycin is an unusual chlorinated tetrahydroquinoline isolated from a strain of Streptomyces (Figure 6.10). Hydrolysis of a prochiral 2,2-disubstituted dimethyl malonate with PLE in DMSO-pH 8 phosphate buffer (1 4) was a key step in a stereodivergent synthesis of this natural product [57]. [Pg.138]

A [2 + 2] photoaddition-cycloreversion was applied to the enantioselective synthesis of the natural product byssocMamic add (Figure 6.11). Desymmetrization of a meso-cyclopentene dimethyl ester with PLE in pH 7 buffer-acetone (5 1) provided a monoacid, one of the photopartners. It is noteworthy that both enantiomers of this natural product were synthesized from the same monoacid [58]. [Pg.138]

A divergent synthesis of tropane alkaloid ferruginine was reported by Node and coworkers [59]. The P-ketoester intermediate was prepared by a novel PLE-catalyzed asymmetric dealkoxycarbonylation (hydrolysis followed by a decarboxylation) of a symmetric tropinone-type diester (Figure 6.12). Dimethyl sulfoxide was added to the phosphate buffer pH 8 (1 9) to reduce the activity of PLE and prevent over-deal-koxycarbonylation leading to tropinone. [Pg.139]


See other pages where Synthesis, buffer is mentioned: [Pg.245]    [Pg.245]    [Pg.47]    [Pg.234]    [Pg.524]    [Pg.259]    [Pg.203]    [Pg.447]    [Pg.72]    [Pg.288]    [Pg.645]    [Pg.162]    [Pg.48]    [Pg.221]    [Pg.80]    [Pg.619]    [Pg.100]    [Pg.221]    [Pg.87]    [Pg.126]    [Pg.142]    [Pg.178]    [Pg.487]    [Pg.506]    [Pg.236]    [Pg.495]    [Pg.815]    [Pg.949]    [Pg.9]    [Pg.138]   
See also in sourсe #XX -- [ Pg.245 , Pg.246 , Pg.247 , Pg.248 ]




SEARCH



One-step Synthesis of L-Fructose Using Rhamnulose-1-phosphate Aldolase in Borate Buffer

Phosphate buffer synthesis

© 2024 chempedia.info