Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bubble phase surface area

For slightly soluble gases, H is defined as a large value (4.2 X 104 bar mol-1 that is the mole fraction of oxygen in H20). The liquid phase controls, kL = Kv For the oxygen transfer rate, the interface area is important. For oxygen bubbles, the surface area of bubbles is defined as ... [Pg.25]

M ass Transfer. Mass transfer in a fluidized bed can occur in several ways. Bed-to-surface mass transfer is important in plating appHcations. Transfer from the soHd surface to the gas phase is important in drying, sublimation, and desorption processes. Mass transfer can be the limiting step in a chemical reaction system. In most instances, gas from bubbles, gas voids, or the conveying gas reacts with a soHd reactant or catalyst. In catalytic systems, the surface area of a catalyst can be enormous. Eor Group A particles, surface areas of 5 to over 1000 m /g are possible. [Pg.76]

Because the reaction takes place in the Hquid, the amount of Hquid held in the contacting vessel is important, as are the Hquid physical properties such as viscosity, density, and surface tension. These properties affect gas bubble size and therefore phase boundary area and diffusion properties for rate considerations. Chemically, the oxidation rate is also dependent on the concentration of the anthrahydroquinone, the actual oxygen concentration in the Hquid, and the system temperature (64). The oxidation reaction is also exothermic, releasing the remaining 45% of the heat of formation from the elements. Temperature can be controUed by the various options described under hydrogenation. Added heat release can result from decomposition of hydrogen peroxide or direct reaction of H2O2 and hydroquinone (HQ) at a catalytic site (eq. 19). [Pg.476]

Ozone is only slightly soluble in water. Thus, factors that affect the mass transfer between the gas and Hquid phases are important and include temperature, pressure, contact time, contact surface area (bubble size), and pH. [Pg.163]

Oxygen transfer rate (OTR) The product of volumetric oxygen transfer rate kj a and the oxygen concentration driving force (C - Cl), (ML T ), where Tl is the mass transfer coefficient based on liquid phase resistance to mass transfer (LT ), a is the air bubble surface area per unit volume (L ), and C and Cl are oxygen solubility and dissolved oxygen concentration, respectively. All the terms of OTR refer to the time average values of a dynamic situation. [Pg.905]

CAL Oxygen concentration in equilibrium with liquid phase at the interface, kmol/m3 CAL Oxygen concentration in the bulk of liquid, kmol/m3 a Interfacial area in surface area of bubbles per unit volume of broth, m2/m3 PQ, Oxygen partial pressure at the interface, atm H Henry s law constant, atm... [Pg.42]

Increase in interfacial area. The total surface area for diffusion is increased because the bubble diameter is smaller than for the free-bubbling case at the same gas flow rate hence there is a resultant increase in the overall absorption rate. The overall absorption rate will also increase when the diffusion is accompanied by simultaneous chemical reaction in the liquid phase, but the increase in surface area only has an appreciable effect when the chemical reaction rate is high the absorption rate for this case is then controlled by physical diffusion rather than by the chemical reaction rate (G6). [Pg.297]

Although this approach permits a greater qualitative understanding of the mass-transfer mechanisms that govern the transfer between two phases, it still does not permit quantitative calculations to be made, because the thickness L and the concentration cL are unknown and the total surface area of the bubbles is not included in the model. [Pg.340]

Tables Mean bubble and droplet diameters and resulting specific surface areas of the dispersed gas and organic phase... Tables Mean bubble and droplet diameters and resulting specific surface areas of the dispersed gas and organic phase...
In the empty tube, bubble and droplet sizes are clearly smaller and hence specific surface areas at the G/L- and L/L-interphase are higher than with the static mixers. Obviously, contact of the dispersed phases with the mixer plates supports the coagulation of bubbles and droplets. However, the overall reaction... [Pg.182]

The bubble column and spray tower depend on nozzles to disperse the drop or bubble phase and thus provide the high area and small particle size necessary for a high rate. Drop and bubble coalescence are therefore problems except in dilute systems because coalescence reduces the surface area. An option is to use an impeller, which continuously redisperses the drop or bubble phase. For gases this is called a sparger reactor, which might look as shown in Figure 12-16. [Pg.504]

Several different analytical and ultra-micropreparative CEC approaches have been described for such peptide separations. For example, open tubular (OT-CEC) methods have been used 290-294 with etched fused silicas to increase the surface area with diols or octadecyl chains then bonded to the surface.1 With such OT-CEC systems, the peptide-ligand interactions of, for example, angiotensin I-III increased with increasing hydrophobicity of the bonded phase on the capillary wall. Porous layer open tubular (PLOT) capillaries coated with anionic polymers 295 or poly(aspartic acid) 296 have also been employed 297 to separate basic peptides on the inner wall of fused silica capillaries of 20 pm i.d. When the same eluent conditions were employed, superior performance was observed for these PLOT capillaries compared to the corresponding capillary zone electrophoresis (HP-CZE) separation. Peptide mixtures can be analyzed 298-300 with OT-CEC systems based on octyl-bonded fused silica capillaries that have been coated with (3-aminopropyl)trimethoxysilane (APS), as well as with pressurized CEC (pCEC) packed with particles of similar surface chemistry, to decrease the electrostatic interactions between the solute and the surface, coupled to a mass spectrometer (MS). In the pressurized flow version of electrochromatography, a pLC pump is also employed (Figure 26) to facilitate liquid flow, reduce bubble formation, and to fine-tune the selectivity of the separation of the peptide mixture. [Pg.619]

The bubble column is shown in Figure 6.2c. In this type of equipment, gas is sparged from the bottom into a liquid contained in a large cylindrical vessel. A large number of gas bubbles provide a very large surface area for gas-liquid contact. Turbulence in the liquid phase creates a large liquid-phase mass transfer coefficient, while the gas-phase coefficient is relatively small because of the very... [Pg.79]

Regime 5 - instantaneous reactions at an reaction plane developing inside the film For very high reaction rates and/or (very) low mass transfer rates, ozone reacts immediately at the surface of the bubbles. The reaction is no longer dependent on ozone transfer through the liquid film kL or the reaction constant kD, but rather on the specific interfacial surface area a and the gas phase concentration. Here the resistance in the gas phase may be important. For lower c(M) the reaction plane is within the liquid film and both film transfer coefficients as well as a can play a role. The enhancement factor can increase to a high value E > > 3. [Pg.91]

In this case the column operates as a bubble column. Either the heavy phase forms droplets (dispersed phase) moving countercurrent to the continuous supercritical phase from the top to the bottom or the supercritical phase is dispersed in form of drops or bubbles moving going up in the continuous liquid phase. For both cases the drop sizes and the drop size distribution is essential for separation efficiency. The smaller the drop sizes the larger is the mass transfer based on the higher specific surface area. [Pg.400]

The equations for the two-phase fully mixed system are thus reduced to the equations for a single stirred tank by the physically motivated notion of only using the available fraction of the feed. This has been made possible by the uniformity of the dense phase and the linearity of the transfer process in the bubble. This allows us to see how the rather implausible assumption that the bubble phase is really well mixed can be made more realistic. Let us go to the other extreme, and suppose that the bubbles ascend with uniform velocity U. The surface area per unit length of reactor is SIH, where 5 is, as before, the total interphase area and H the height of the bed. If h is the transfer coefficient and z the height of a given point, a balance over the interval (z, z + dz) gives the equation for the concentration in the bubble phase b(z)... [Pg.42]

The overall rate of reaction calculated for the three-phase fluidised-bed reactor above is approximately one tenth of the rate calculated for the agitated tank slurry reactor in Example 4.6. The main reasons are the very poor effectiveness factor and the relatively smaller external surface area for mass transfer caused by using the larger particles. Even the gas-liquid transfer resistance is greater for the three-phase fluidised-bed, in spite of the larger particles being able to produce relatively small bubbles these bubbles are not however as small as can be produced... [Pg.241]


See other pages where Bubble phase surface area is mentioned: [Pg.301]    [Pg.301]    [Pg.557]    [Pg.337]    [Pg.430]    [Pg.1815]    [Pg.107]    [Pg.1170]    [Pg.24]    [Pg.34]    [Pg.266]    [Pg.298]    [Pg.321]    [Pg.23]    [Pg.23]    [Pg.152]    [Pg.6]    [Pg.198]    [Pg.26]    [Pg.129]    [Pg.611]    [Pg.613]    [Pg.392]    [Pg.183]    [Pg.335]    [Pg.113]    [Pg.228]    [Pg.240]    [Pg.64]    [Pg.172]    [Pg.439]    [Pg.124]    [Pg.180]   
See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Bubble phase

Bubble surface

Bubbles surface area

Bubbling area

Bubbling phase

Surface phase

© 2024 chempedia.info