Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bubble exchangers

The simplest model of a bubbling fluidized bed, with uniform bubbles exchanging matter with a dense phase of catalytic particles which promote a continuum of parallel first order reactions is considered. It is shown that the system behaves like a stirred tank with two feeds the one, direct at the inlet the other, distributed from the bubble train. The basic results can be extended to cases of catalyst replacement for a single reactant and to Astarita s uniform kinetics for the continuous mixture. [Pg.211]

Bubbles and Fluidized Beds. Bubbles, or gas voids, exist in most fluidized beds and their role can be important because of the impact on the rate of exchange of mass or energy between the gas and soflds in the bed. Bubbles are formed in fluidized beds from the inherent instabiUty of two-phase systems. They are formed for Group A powders when the gas velocity is sufficient to start breaking iaterparticle forces at For Group B powders, where iaterparticle forces are usually negligible, and bubbles form immediately upon fluidization. Bubbles, which are inherently... [Pg.75]

Bubble size control is achieved by controlling particle size distribution or by increasing gas velocity. The data as to whether internal baffles also lower bubble size are contradictory. (Internals are commonly used in fluidized beds for heat exchange, control of soflds hackmixing, and other purposes.)... [Pg.75]

Analysis of a method of maximizing the usefiilness of smaH pilot units in achieving similitude is described in Reference 67. The pilot unit should be designed to produce fully developed large bubbles or slugs as rapidly as possible above the inlet. UsuaHy, the basic reaction conditions of feed composition, temperature, pressure, and catalyst activity are kept constant. Constant catalyst activity usuaHy requires use of the same particle size distribution and therefore constant minimum fluidization velocity which is usuaHy much less than the superficial gas velocity. Mass transport from the bubble by diffusion may be less than by convective exchange between the bubble and the surrounding emulsion phase. [Pg.518]

These design fundamentals result in the requirement that space velocity, effective space—time, fraction of bubble gas exchanged with the emulsion gas, bubble residence time, bed expansion relative to settled bed height, and length-to-diameter ratio be held constant. Effective space—time, the product of bubble residence time and fraction of bubble gas exchanged, accounts for the reduction in gas residence time because of the rapid ascent of bubbles, and thereby for the lower conversions compared with a fixed bed with equal gas flow rates and catalyst weights. [Pg.518]

Several descriptions have been pubUshed of the continuous tar stills used in the CIS (9—11). These appear to be of the single-pass, atmospheric-pressure type, but are noteworthy in three respects the stills do not employ heat exchange and they incorporate a column having a bubble-cap fractionating section and a baffled enrichment section instead of the simple baffled-pitch flash chamber used in other designs. Both this column and the fractionation column, from which light oil and water overhead distillates, carboHc and naphthalene oil side streams, and a wash oil-base product are taken, are equipped with reboilers. [Pg.336]

The modeling of fluidized beds remains a difficult problem since the usual assumptions made for the heat and mass transfer processes in coal combustion in stagnant air are no longer vaUd. Furthermore, the prediction of bubble behavior, generation, growth, coalescence, stabiUty, and interaction with heat exchange tubes, as well as attrition and elutriation of particles, are not well understood and much more research needs to be done. Good reviews on various aspects of fluidized-bed combustion appear in References 121 and 122 (Table 2). [Pg.527]

Heat transfer by nucleate boiling is an important mechanism in the vaporization of liqmds. It occurs in the vaporization of liquids in kettle-type and natural-circulation reboilers commonly usea in the process industries. High rates of heat transfer per unit of area (heat flux) are obtained as a result of bubble formation at the liquid-solid interface rather than from mechanical devices external to the heat exchanger. There are available several expressions from which reasonable values of the film coefficients may be obtained. [Pg.568]

The general charac teristics of the main types of reac tors—batch and continuous—are clear. Batch processes are suited to small production rates, to long reaction times, or to reactions where they may have superior selectivity, as in some polymerizations. They are conducted in tanks with stirring of the contents bv internal impellers, gas bubbles, or pumparound. Temperature controf is with internal surfaces or jackets, reflux condensers, or pumparound through an exchanger. [Pg.2070]

Damage will be confined to the bubble-collapse region, usually immediately downstream of the low-pressure zone. Components exposed to high velocity or turbulent flow, such as pump impellers and valves, are subject. The suction side of pumps (Case History 12.3) and the discharge side of regulating valves (Fig. 12.6 and Case History 12.4) are frequently affected. Tube ends, tube sheets, and shell outlets in heat exchanger equipment have been affected, as have cylinder liners in diesel engines (Case History 12.1). [Pg.275]

Ion-exchange resins swell in water to an extent which depends on the amount of crosslinking in the polymer, so that columns should be prepared from the wet material by adding it as a suspension in water to a tube already partially filled with water. (This also avoids trapping air bubbles.) The exchange capacity of a resin is commonly expressed as mg equiv./mL of wet resin. This quantity is pH-dependent for weak-acid or weak-base resins but is constant at about 0.6-2 for most strong-acid or strong-base types. [Pg.22]

Thermal shock In biphase systems, steam bubbles may become trapped in pools of condensate in a flooded main, branch, or tracer line, as well as in heat exchanger tubing and pumped condensate lines. Since condensate temperature is almost always below saturation, the steam will immediately collapse. [Pg.313]

A vapor poeket on the exchanger s low-pressure side can create a cushion that may greatly diminish the pressure transient s intensity. A transient analysis may not be required if sufficient low-pressure side vapor exists (although tube rupture should still be considered as a viable relief scenario). However, if the low-pressure fluid is liquid from a separator that has a small amount of vapor from flashing across a level control valve, the vapor pocket may collapse after the pressure has exceeded the fluid s bubble point. The bubble point will be at the separator pressure. Transient analysis will prediet a gradually inereasing pressure until the pressure reaches the bubble point. Then, the pressure will increase rapidly. For this ease, a transient analysis should be considered. [Pg.49]

The baffle patterns in the column can be segmental (simple) up to about 4-ft diameter column, and larger columns can use a disk and donut design as in heat exchangers, or the double segmented or even multi-segmented as in the layouts discussed under bubble caps earlier in this text. [Pg.214]

Where heat transfer is taking place at the saturation temperature of a fluid, evaporation or condensation (mass transfer) will occur at the interface, depending on the direction of heat flow. In such cases, the convective heat transfer of the fluid is accompanied by conduction at the surface to or from a thin layer in the liquid state. Since the latent heat and density of fluids are much greater than the sensible heat and density of the vapour, the rates of heat transfer are considerably higher. The process can be improved by shaping the heat exchanger face (where this is a solid) to improve the drainage of condensate or the escape of bubbles of vapour. The total heat transfer will be the sum of the two components. [Pg.12]


See other pages where Bubble exchangers is mentioned: [Pg.39]    [Pg.361]    [Pg.364]    [Pg.366]    [Pg.432]    [Pg.39]    [Pg.361]    [Pg.364]    [Pg.366]    [Pg.432]    [Pg.54]    [Pg.523]    [Pg.252]    [Pg.83]    [Pg.429]    [Pg.43]    [Pg.369]    [Pg.518]    [Pg.280]    [Pg.336]    [Pg.337]    [Pg.21]    [Pg.293]    [Pg.604]    [Pg.1264]    [Pg.2387]    [Pg.2400]    [Pg.16]    [Pg.145]    [Pg.209]    [Pg.158]    [Pg.871]    [Pg.39]    [Pg.172]    [Pg.87]    [Pg.206]    [Pg.206]    [Pg.96]    [Pg.114]   
See also in sourсe #XX -- [ Pg.109 , Pg.110 , Pg.387 ]




SEARCH



Heat Exchange Between Flow and Particles, Drops, or Bubbles

© 2024 chempedia.info