Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bromine with carboxylate ions

A benzisoxazole moiety provides the nucleus of an anticonvulsant agent whose structure differs markedly from the traditional agents in this class. The synthesis starts with a compound (61-1) that incorporates a preformed benzisoxazole. Bromination proceeds on the position adjacent to the carboxylic acid (61-2). This intermediate loses carbon dioxide on heating, leaving behind the bromomethyl derivative (61-3). Displacement of the halogen with the ion from the reaction of imidazole with sodium hydride yields the alkylation product (61-4). The short side chain is then methylated by successive treatment with a base and methyl idodide to afford zoniclezole (61-5) [64]. [Pg.421]

The bromination of the tetracyclic compound (30) affords71 the novel compound (31) formed by capture of the Wheland intermediate by the neighbouring carboxylate ion. The intramolecular reaction of some activated pyridines with /Y-acyliminium ions led to some novel heterocycles [e.g. (33) from (32) in the presence of /Molucncsulfonic acid in benzene] by cyclization para to an electron-donating substituent.72... [Pg.267]

A number of other methods exist for the a halogenation of carboxylic acids or their derivatives. Acyl halides can be a brominated or chlorinated by use of NBS or NCS and HBr or HCl. The latter is an ionic, not a free-radical halogenation (see 14-2). Direct iodination of carboxylic acids has been achieved with I2—Cu acetate in HOAc. " ° Acyl chlorides can be a iodinated with I2 and a trace of HI. Carboxylic esters can be a halogenated by conversion to their enolate ions with lithium A-isopropylcyclohexylamide in THF and treatment of this solution at -78°C with... [Pg.778]

Cyanide and thiocyanate anions in aqueous solution can be determined as cyanogen bromide after reaction with bromine [686]. The thiocyanate anion can be quantitatively determined in the presence of cyanide by adding an excess of formaldehyde solution to the sample, which converts the cyanide ion to the unreactive cyanohydrin. The detection limits for the cyanide and thiocyanate anions were less than 0.01 ppm with an electron-capture detector. Iodine in acid solution reacts with acetone to form monoiodoacetone, which can be detected at high sensitivity with an electron-capture detector [687]. The reaction is specific for iodine, iodide being determined after oxidation with iodate. The nitrate anion can be determined in aqueous solution after conversion to nitrobenzene by reaction with benzene in the presence of sulfuric acid [688,689]. The detection limit for the nitrate anion was less than 0.1 ppm. The nitrite anion can be determined after oxidation to nitrate with potassium permanganate. Nitrite can be determined directly by alkylation with an alkaline solution of pentafluorobenzyl bromide [690]. The yield of derivative was about 80t.with a detection limit of 0.46 ng in 0.1 ml of aqueous sample. Pentafluorobenzyl p-toluenesulfonate has been used to derivatize carboxylate and phenolate anions and to simultaneously derivatize bromide, iodide, cyanide, thiocyanate, nitrite, nitrate and sulfide in a two-phase system using tetrapentylammonium cWoride as a phase transfer catalyst [691]. Detection limits wer Hi the ppm range. [Pg.959]

Carboxylic acids can be converted to acyl chlorides and bromides by a combination of triphenylphosphine and a halogen source. Triphenylphosphine and carbon tetrachloride convert acids to the corresponding acyl chloride.100 Similarly, carboxylic acids react with the triphenyl phosphine-bromine adduct to give acyl bromides.101 Triphenviphosphine-iV-hromosuccinimide also generates acyl bromide in situ.102 All these reactions involve acyloxyphosphonium ions and are mechanistically analogous to the alcohol-to-halide conversions that are discussed in Section 3.1.2. [Pg.244]

Treatment of either cis- or rrans-stilbene-2-carboxylic acids with chlorine or bromine leads to 4-halogeno-3,4-dihydro-3-phenylisocoumarins (58T<4)393). The reactions are stereospecific and are thought to involve intramolecular attack by the carboxyl group on a halonium ion. Ring closure to the corresponding 4-hydroxy compound also occurs stereo-specifically using peroxyphthalic acid (59JOC934). [Pg.858]

Regarding ozonation processes, the treatment with ozone leads to halogen-free oxygenated compounds (except when bromide is present), mostly aldehydes, carboxylic acids, ketoacids, ketones, etc. [189]. The evolution of analytical techniques and their combined use have allowed some researchers to identify new ozone by-products. This is the case of the work of Richardson et al. [189,190] who combined mass spectrometry and infrared spectroscopy together with derivatization methods. These authors found numerous aldehydes, ketones, dicarbonyl compounds, carboxylic acids, aldo and keto acids, and nitriles from the ozonation of Mississippi River water with 2.7-3 mg L 1 of TOC and pH about 7.5. They also identified by-products from ozonated-chlorinated (with chlorine and chloramine) water. In these cases, they found haloalkanes, haloalkenes, halo aldehydes, haloketones, haloacids, brominated compounds due to the presence of bromide ion, etc. They observed a lower formation of halocompounds formed after ozone-chlorine or chloramine oxidations than after single chlorination or chlorami-nation, showing the beneficial effect of preozonation. [Pg.57]

If the reaction between the enol and the electrophile proceeds extremely fast, the enol tautomer of a carbonyl or carboxyl compound might be consumed completely. The generation of enol becomes the rate-determining step. This situation occurs with the enol titration of ace-toacetic ester, (Figure 12.4). In this process, bromine is added to an equilibrium mixture of the ketone form (B) and the enol form (iso-B) of an acetoacetic ester. Bromine functionalizes the enol form via the intermediacy of the carboxonium ion E to form the bromoacetic ester D. The trick of conducting the enol titration is to capture the enol portion of a known amount of acetoacetic ester by adding exactly the equivalent amount of bromine. From the values for... [Pg.493]

Cycloalkenes tethered with a y,5- or 5,8-unsaturated acid side chains react with Brj or I2 to furnish the corresponding halolactones. lodolactonization is more commonly used than bromolactonization since iodine is easier to handle (solid) and is more chemoselective (less reactive) than bromine. Halolactonization with aqueous base is kinetically controlled and proceeds via addition of a Br or B atom to the double bond to form a transient halonium ion. In the absence of strong directing steric effects, formation of the halonium ion may occur at either diastereoface of the double bond. However, only the halonium ion intermediate which allows trans-diaxial Sj. 2 opening by the neighboring carboxylate nucleophile leads, if the intramolecular reaction is sterically favorable, to the lactone. [Pg.186]


See other pages where Bromine with carboxylate ions is mentioned: [Pg.20]    [Pg.219]    [Pg.56]    [Pg.152]    [Pg.56]    [Pg.326]    [Pg.255]    [Pg.6201]    [Pg.152]    [Pg.193]    [Pg.217]    [Pg.575]    [Pg.59]    [Pg.171]    [Pg.172]    [Pg.158]    [Pg.943]    [Pg.85]    [Pg.207]    [Pg.295]    [Pg.309]    [Pg.259]    [Pg.731]    [Pg.648]    [Pg.299]    [Pg.262]    [Pg.86]    [Pg.497]    [Pg.272]    [Pg.73]    [Pg.858]    [Pg.136]    [Pg.618]    [Pg.842]    [Pg.995]    [Pg.6]    [Pg.37]    [Pg.220]    [Pg.262]   
See also in sourсe #XX -- [ Pg.730 , Pg.731 ]




SEARCH



Bromination with bromine

Bromine ion

Carboxylate ions

Carboxylic ion

With bromine

© 2024 chempedia.info